Open Access
Issue
Mechanics & Industry
Volume 20, Number 1, 2019
Article Number 104
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2019003
Published online 28 March 2019
  1. B. Hervé, J.-J. Sinou, H. Mahé, L. Jézéquel, Extension of the destabilization paradox to limit cycle amplitudes for a nonlinear self-excited system subject to gyroscopic and circulatory actions, J. Sound Vib. 323 (2009) 944–973 [CrossRef] [Google Scholar]
  2. F. Van De Velde, P. De Baets, A new approach of stick-slip based on quasiharmonic tangential oscillations, Wear 216 (1998) 15–26 [CrossRef] [Google Scholar]
  3. F. Van De Velde, P. De Baets, The relation between friction force and relative speed during the slip-phase of a stick-slip cycle, Wear 219 (1998) 220–226 [CrossRef] [Google Scholar]
  4. P. Wickramarachi, R. Singh, G. Bailey, Analysis of friction-induced vibration leading to “eek” noise in a dry friction clutch, Noise Control Eng. J. 53 (2005) 138–144 [CrossRef] [Google Scholar]
  5. G. Fritz, J.-J. Sinou, J.-M. Duffal, L. Jézéquel, Investigation of the relationship between damping and mode-coupling patterns in case of brake squeal, J. Sound Vib. 307 (2007) 591–609 [CrossRef] [Google Scholar]
  6. B. Hervé, J.-J. Sinou, H. Mahé, L. Jézéquel, Analysis of squeal noise and mode coupling instabilities including damping and gyroscopic effects, Eur. J. Mech. A Solids 27 (2008) 141–160 [CrossRef] [Google Scholar]
  7. D. Centea, H. Rahnejat, M.T. Menday, Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder), Appl. Math. Model. 25 (2001) 177–192 [CrossRef] [Google Scholar]
  8. G. Chevallier, F. Macewko, F. Robbe-Valloire, Dynamic friction evolution during transient sliding, Tribol. Ser. 43 (2003) 537–543 [CrossRef] [Google Scholar]
  9. G. Chevallier, D. Le Nizerhy, Friction induced vibrations in a clutch system. consequences on the apparent friction torque, in: C.A. Motasoares, J.A.C. Martins, H.C. Rodrigues, J.A.C. Ambrósio, C.A.B. Pina, C.M. Motasoares, E.B.R. Pereira, J. Folgado (Eds.), III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering: Book of Abstracts, Dordrecht, Springer, Netherlands, 2006, 309–309 [Google Scholar]
  10. R.A. Ibrahim, Friction-induced vibration, chatter, squeal, and chaos − Part I: mechanics of contact and friction, Appl. Mech. Rev. 47 (1994) 209–226 [CrossRef] [Google Scholar]
  11. L. Nechak, S. Berger, E. Aubry, A polynomial chaos approach to the robust analysis of the dynamic behaviour of friction systems, Eur. J. Mech. A Solids 30 (2011) 594–607 [CrossRef] [Google Scholar]
  12. L. Nechak, S. Berger, E. Aubry, Non-intrusive generalized polynomial chaos for the robust stability analysis of uncertain nonlinear dynamic friction systems, J. Sound Vib. 332 (2013) 1204–1215 [CrossRef] [Google Scholar]
  13. E. Sarrouy, O. Dessombz, J.-J. Sinou, Piecewise polynomial chaos expansion with an application to brake squeal of a linear brake system, J. Sound Vib. 332 (2013) 577–594 [CrossRef] [Google Scholar]
  14. E. Sarrouy, O. Dessombz, J.-J. Sinou, Stochastic analysis of the eigenvalue problem for mechanical systems using polynomial chaos expansion − application to a finite element rotor, J. Vib. Acoust. 134 (2012) 051009 [CrossRef] [Google Scholar]
  15. L. Nechak, S. Besset, J.-J. Sinou, Robustness of stochastic expansions for the stability of uncertain nonlinear dynamical systems − application to brake squeal, Mech. Syst. Signal Process. 111 (2018) 194–209 [CrossRef] [Google Scholar]
  16. L. Nechak, J.-J. Sinou, Hybrid surrogate model for the prediction of uncertain friction-induced instabilities, J. Sound Vib. 396 (2017) 122–143 [CrossRef] [Google Scholar]
  17. E. Denimal, L. Nechak, J.-J. Sinou, S. Nacivet, A novel hybrid surrogate model and its application on a mechanical system subjected to friction-induced vibration, J. Sound Vib. 434 (2018) 456–474 [CrossRef] [Google Scholar]
  18. E. Jacquelin, O. Dessombz, J.-J. Sinou, S. Adhikari, M.I. Friswell, Polynomial chaos-based extended padé expansion in structural dynamics, Int. J. Numer. Methods Eng. 111 (2017) 1170–1191 [CrossRef] [Google Scholar]
  19. L. Nechak, S. Berger, E. Aubry, Prediction of random self friction-induced vibrations in uncertain dry friction systems using a multi-element generalized polynomial chaos approach, J. Vib. Acoust. 134 (2012) 041015 [CrossRef] [Google Scholar]
  20. M.H. Trinh, S. Berger, E. Aubry, Stability analysis of a clutch system with multi-element generalized polynomial chaos, Mech. Ind. 17 (2016) 205 [CrossRef] [Google Scholar]
  21. D.C. Montgomery, Design and analysis of experiments, in: Student solutions manual, John Wiley & Sons, NY, 2008 [Google Scholar]
  22. J. An, A. Owen, Quasi-regression, J. Complexity 17 (2001) 588–607 [CrossRef] [Google Scholar]
  23. R.A. Todor, C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal. 27 (2007) 232–261 [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Blatman, B. Sudret, Anisotropic parcimonious polynomial chaos expansions based on the sparsity-of-effects principle, in: Proc ICOSSAR'09, International Conference in Structural Safety and Relability, 2009 [Google Scholar]
  25. G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilist. Eng. Mech. 25 (2010) 183–197 [Google Scholar]
  26. G. Blatman, B. Sudret, Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, Comptes Rendus Mécanique 336 (2008) 518–523 [CrossRef] [Google Scholar]
  27. J.-J. Sinou, Transient non-linear dynamic analysis of automotive disc brake squeal − On the need to consider both stability and non-linear analysis, Mech. Res. Commun. 37 (2010) 96–105 [CrossRef] [Google Scholar]
  28. A. Shapiro, Monte Carlo sampling methods, in: Stochastic Programming, Vol. 10, Handbooks in Operations Research and Management Science, Elsevier Science, NY, 2003, 353–425 [Google Scholar]
  29. D. Xiu, G.E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput. 24 (2002) 619–644 [CrossRef] [MathSciNet] [Google Scholar]
  30. R.H. Cameron, W.T. Martin, The orthogonal development of non-linear functionals in series of fourier-hermite functionals, Ann. Math. 48 (1947) 385–392 [CrossRef] [Google Scholar]
  31. R. Askey, J.A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Am. Math. Soc. 319 (1985) [Google Scholar]
  32. D. Xiu, G.E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Eng. 191 (2002) 4927–4948 [CrossRef] [MathSciNet] [Google Scholar]
  33. M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (1979) 239–245 [Google Scholar]
  34. M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non intrusive approach by regression, Eur. J. Comput. Mech. (Revue Européenne de Mécanique Numérique) 15 (2006) 81–92 [CrossRef] [Google Scholar]
  35. X. Wan, G.E. Karniadakis, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys. 209 (2005) 617–642 [CrossRef] [Google Scholar]
  36. G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, PhD thesis, Université BLAISE PASCAL − Clermont II, 2009 [Google Scholar]
  37. B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf. 93 (2008) 964–979 [CrossRef] [Google Scholar]
  38. G.G. Wang, Adaptive response surface method using inherited Latin Hypercube design points, J. Mech. Des. 125 (2003) 210–220 [CrossRef] [Google Scholar]
  39. G. Baillargeon, Méthodes statistiques de l'ingénieur, Les Editions SMG, 1990 [Google Scholar]
  40. N. Hoffmann, L. Gaul, Effects of damping on mode-coupling instability in friction induced oscillations, J. Appl. Math. Mech. 83 (2003) 524–534 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.