Open Access
Mécanique & Industries
Volume 6, Number 2, Mars-Avril 2005
Page(s) 189 - 193
Published online 21 April 2005
  1. A. Zebib, Y.K. Wo, A two-dimensional conjugate heat transfer model for forced air cooling of an electronic device, Transactions of ASME J. Electronic Packaging 111 (1989) 41–45 [CrossRef] [Google Scholar]
  2. K. Hijikata, W. Nakayama, T. Nagasaki, R. Kurazume, K. Fushinobu, A study on heat transfer from small heating element in an integrated circuit chip, Proc. of the 3rd ASME/JSME Thermal Engineering Joint Conf. 4, 1991, pp. 93–98 [Google Scholar]
  3. T. Nagasaki, K. Hijikata, K. Fishinobu, P.E. Phelan, Numerical simulation of the conjugate direct cooling of a micro heat generating element, Proc. ASME/JSME Conf. on Electronic Packaging 1, 1992, pp. 217–223 [Google Scholar]
  4. K. Fushinobu, P.E. Phelan, T. Nagasaki, K. Hijikata, M.I. Flik, Periodic steady-state thermal analysis of a high-Tc superconducting microbolometer, Trans. ASME J. Heat Transfer. 116 (1994) 278–275 [CrossRef] [Google Scholar]
  5. K. Fushinobu, K. Hijikata, Y. Kurosaki, Heat transfer regime map for electronic devices cooling, Int. J. Heat Mass Transfer. 39 (1996) 3139–3145 [CrossRef] [Google Scholar]
  6. B.A. Jubran, S.A. Swiety, M.A. Hamdan., Convective heat transfer and pressure drop characteristics of various array configurations to simulate the cooling of electronic modules, Int. J. Heat Mass Transfer. 39 (1996) 3519–3529 [CrossRef] [Google Scholar]
  7. M. Hasnaoui, E. Bilgen, P. Vasseur, Natural convection above an array open cavities heated from below, Numerical Heat Transfer. Part A 18 (1991) 463–482 [CrossRef] [Google Scholar]
  8. J.N.N. Quaresma, R.M. Cotta, Exact solutions for thermally developing tube flow with variable wall heat flux, Int. Comm. Heat Mass Transfer. 41 (1994) 729–742 [Google Scholar]
  9. Dae-Young Lee, Sang-Jin. Park, Sung. Tack. Ro, Heat transfer by oscillating flow in circular pipe with a sinusoidal wall temperature distribution, Int. J. Heat Mass Transfer. 38 (1995) 2529–2537 [CrossRef] [Google Scholar]
  10. P. Stefano, An analytical approach to fully developedheating of laminar flows in circular pipes, Int. Comm. Heat Mass Transfer. 22 (1995) 815–824 [CrossRef] [Google Scholar]
  11. T. Nishimura, N. Kojima, Mass transfer enhancement in symmetric sinusoidal wavy-walled channel for pulsatile flow, Int. J. Heat Mass Transfer. 38 (1995) 1719–1731 [CrossRef] [Google Scholar]
  12. G. Russ, H. Beer, Heat transfer and flow field in a pipe with sinusoidal wavy surface-I numerical investigation, Int. J. Heat. Mass Transfer. 40 (1997) 1061–1070 [CrossRef] [Google Scholar]
  13. G. Russ, H. Beer, Heat transfer and flow field in a pipe with sinusoidal wavy surface-II Experimental investigation, Int. J. Heat. Mass Transfer. 40 (1997) 1071–1081 [CrossRef] [Google Scholar]
  14. M. Sijelmassi, J. Khalid Naciri, Contrôle des profils de vitesse par déformation de parois dans une conduite, C. R. Acad. Sci. Paris série IIb 330 (2002) 153–158 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.