Open Access
Mécanique & Industries
Volume 8, Number 6, Novembre-Décembre 2007
Page(s) 567 - 575
Published online 06 February 2008
  1. ISO 281, Charges dynamiques de base et durée nominale [Google Scholar]
  2. R. Stribeck, Ball bearing for various loads, Trans. ASME 29 (1907) 420–463 [Google Scholar]
  3. ISO 76, Charges statiques de base [Google Scholar]
  4. G. Lundberg, A. Palmgren, Dynamic Capacity of Rolling Bearings, Acta polytechnica 7, Mech. Eng. Ser. 1 (1947) [Google Scholar]
  5. A.B. Jones, A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions, Trans. ASME 82 (1960) 309–320 [Google Scholar]
  6. T. Harris, Rolling Bearing Analysis 4th edition, Wiley Interscience, 2001 [Google Scholar]
  7. A.B. Jones, T. Harris, Analysis of a rolling element idler gear bearing having a deformable outer race structure, ASME Trans., J. Basic Eng. (1963) 273–279 [Google Scholar]
  8. S. Zupan, I. Prebil, Carrying angle and carrying capacity of large single row ball bearing as a function of geometry parameters of the rolling contact and the supporting structure stiffness, Mech. Machine Theory 36 (2001) 1087–1103 [CrossRef] [Google Scholar]
  9. T. Hauswald, L. Houpert, Numerical and experimental simulations of performances of bearing system, shaft and housing, Account for global and local deformations, Presented at the SIA seminar “Fiabilité experimentale”, Oct. 24, 2000, Paris, Proceedings of the Conference [Google Scholar]
  10. T. Hauswald, L. Houpert, Simulations des performances d'un système avec roulements. CNRS paper published in Phoebus 13, 2e trimestre (2000) 77–89 [Google Scholar]
  11. A. Bourdon, J. Rigal, D. Play, Static rolling bering model in a C.A.D. Environment for the study of complex mechanisms: Part I and II, Rolling bearing model, ASME Trans., J. Tribology 121 (1999) 205–214, 215–224 [CrossRef] [Google Scholar]
  12. M.R. Lovel, M.M. Khonsari, R.D. Marangoni, A finite-element analysis of the frictional forces between a cylindrical bearing element and MoS2 coated and uncoated surfaces, Wear 194 (1996) 60–70 [CrossRef] [Google Scholar]
  13. H. Zhao, Analysis of load distribution within solid and hollow roller bearings, ASME Trans., J. Tribology 120 (1998) 134–139 [CrossRef] [Google Scholar]
  14. Y. Kang, P.C. Shen, C.-C. Huang, S.-S. Shyr, Y.-P. Chang, A modification of the Jones-Harris method for deep-groove ball bearings, Tribology Int. 39 (2006) 1413–1420. [CrossRef] [Google Scholar]
  15. L. Houpert, An Engineering Approach to Hertzian Contact Elasticity, part I and II, ASME J. Tribology 123 (2001) 582–588, 589–594 [CrossRef] [Google Scholar]
  16. N. Tanaka, A new calculation method of Hertz elliptical contact pressure, ASME J. Tribology 123 (2001) 887–889 [CrossRef] [Google Scholar]
  17. J.F. Antoine, C. Visa, C. Sauvey, G. Abba, Analytical solution for Hertzian contact problems, ASME J. Tribology 128 (2006) 660–664 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.