Open Access
Issue
Mécanique & Industries
Volume 9, Number 1, Janvier-Février 2008
Page(s) 17 - 23
DOI https://doi.org/10.1051/meca:2008003
Published online 17 May 2008
  1. J. Canales, A. Hernandez, M.F. Izaguirre, J.A. Tarrago, An integrated system for shape optimal design using a parametric geometric model and adaptive mesh refinement STRUCOME, 1992, 621–632 [Google Scholar]
  2. R. Younsi, Optimisation de forme de structures tridimensionnelles, Thèse de Doctorat de l'Université de Technologie de Compiègne, 1993 [Google Scholar]
  3. H. Naceur, Contribution à l'optimisation de forme de structures minces en présence de non linéarités géométriques et matérielles, Thèse de Doctorat de l'Université de Technologie de Compiègne, 1998 [Google Scholar]
  4. K. Dems, R.T. Haftka, Two approaches to sensitivity analysis, for shape variation of structures, Mech. Struct. Mach 16 (1988) 501–522 [Google Scholar]
  5. R.T. Haftka, H.L.M. Adelman, Recent developments in structural sensitivity analysis, Structural Optimization 1 (1989) 137–151 [Google Scholar]
  6. A. Srikanth, N. Zabaras, Shape optimization and preform design in metal forming processes, Comput. Methods Appl. Mech. Engrg. 190 (2000) 1859–1901 [CrossRef] [Google Scholar]
  7. G. David, Phelan, An adjoint variable method for sensitivity analysis of nonlinear elastic systems, Int. J. numerical methods in engineering (1991) 1649–1667 [Google Scholar]
  8. M. Yatheendhar, A.D. Belegundu, Analytical shape sensitivity by implicit differentiation for general velocity fields, Comput. Structures 46 (1993) 617–623 [CrossRef] [Google Scholar]
  9. N.H. Kim, K.K. Choi, Design sensitivity analysis and optimization of nonlinear transient dynamics, Mech. Structures and Machines 29 (2001) 351–371 [CrossRef] [Google Scholar]
  10. X. Song, J.D. Baldwin, A novel node-based structural shape optimization algorithm Computers and structures 70 (1999) 569–581 [Google Scholar]
  11. E. Rohan, J.R. Whiteman, Shape optimization of elasto-plastic structures and continua Comput. Methods Appl. Mech. Engrg. 187 (2000) 261–288 [Google Scholar]
  12. N.H. Kim, J. Dong, K.K. Choi, N. Vlahopoulos, Z.D. Ma, M.P. Castanier, C. Pierre, Design sensitivity analysis for a sequential structural-acoustic problem, J. Sound Vib. 263 (2003) 569–591 [CrossRef] [Google Scholar]
  13. S. Oral, A Mindlin plate finite element with semi-analytical shape design sensitivities, Computers and Structures 78 (2000) 467–472 [CrossRef] [Google Scholar]
  14. M. Tanaka, H. Noguchi, Structural shape optimization of hyperelastic material by discrete force method, Theoret. App. Mech. Japan 53 (2004) 83–91 [Google Scholar]
  15. H. Azegami, Z.C. Wu, Domain optimization analysis in linear elastic problems: Approach using traction method, JSME Int. J., Se. A: Mech. Mat. Eng. 39 (1996) 272–278 [Google Scholar]
  16. H. Uysala, R. Gula, U. Uzmanb, Optimum shape design of shell structures, Eng. Structures 29 (2007) 80–87 [CrossRef] [Google Scholar]
  17. E.J. Haug, K.K. Choi, V. Komkov, Design sensitivity analysis of structural systems, New York: Academic Press, 1986 [Google Scholar]
  18. J.L.T. Santos, K.K. Choi, Shape design sensitivity analysis of nonlinear structural systems, Struct. Optim. 4 (1992) 23–35 [CrossRef] [Google Scholar]
  19. I. Grindeanu, K.H. Chang, K.K. Choi, J.S. Chen, Design sensitivity analysis of hyper-elastic structures using a meshless method, AIAA J. 36 (1987) 618–628 [CrossRef] [Google Scholar]
  20. D.F. Rogers, J.A. Adams, Mathematical elements for computer graphics, McGraw-Hill, 1990 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.