Open Access
Issue
Mécanique & Industries
Volume 9, Number 6, Novembre-Décembre 2008
Page(s) 559 - 569
DOI https://doi.org/10.1051/meca/200920
Published online 16 May 2009
  1. U. Lee, Separation between the flexible structure and the moving mass sliding on it, J. Sound Vibr. 209 (1998) 867–877 [CrossRef] [Google Scholar]
  2. A.V. Pesterev, B. Yang, L.A. Bergman, C.A. Tan, Response of elastic continuum carrying multiple moving oscillators, ASCE J. Eng. Mech. 127 (2001) 260–265 [CrossRef] [Google Scholar]
  3. C.R. Steele, The Timoshenko beam with a moving load, J. Appl. Mech. 35 (1968) 481–488 [Google Scholar]
  4. L. Fryba, Vibration of solids and structures under moving loads, Noordhoff Publishing, Groningen, 1972 [Google Scholar]
  5. J. Renard, M. Taazount, Transient responses of beams and plates subject to travelling load. Miscellaneous results, Eur. J. Mech. A/Solids 21 (2002) 301–322 [CrossRef] [MathSciNet] [Google Scholar]
  6. J.R. Rieker, M.W. Trethewey, Finite element analysis of an elastic beam structure subjected to a moving distributed mass train, Mech. Syst. Sig. Proc. 13 (1999) 31–51 [CrossRef] [Google Scholar]
  7. M.P. Cartmell, J.J. Wu, A.R. Whittaker, Dynamic responses of structures to moving bodies using combined finite element and analytical methods, Int. J. Mech. Sci. 43 (2001) 2555–2579 [CrossRef] [Google Scholar]
  8. M. Olsson, Finite element modal co-ordinate analysis of structures subjected to moving loads, J. Sound Vib. 99 (1985) 1–12 [CrossRef] [Google Scholar]
  9. H.P. Lee, The dynamic response of a Timoshenko beam subjected to a moving mass, J. Sound Vib. 198 (1996) 249–256 [CrossRef] [Google Scholar]
  10. J.E. Akin, M. Mofid, Numerical solution for response of beams with moving mass, J. Structural Eng. 115 (1989) 120–131 [CrossRef] [Google Scholar]
  11. E.C. Ting, J. Genin, J.H. Ginsberg, A general algorithm for moving mass problem, J. Sound Vib. 33 (1974) 49–58 [CrossRef] [Google Scholar]
  12. A.V. Pesterev, L.A. Bergman, C.A. Tan, T.C. Tsao, B. Yang, On asymptotics of the solution of the moving oscillator problem, J. Sound Vib. 260 (2003) 516–536 [Google Scholar]
  13. C.W.S. To, A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis, J. Sound Vibr. 78 (1981) 475–484 [CrossRef] [Google Scholar]
  14. Y.C. Hou, C.H. Tseng, A new high-order non-uniform Timoshenko beam finite element on variable two-parameter foundations for vibration analysis, J. Sound Vib. 191 (1996) 91–106 [CrossRef] [Google Scholar]
  15. M.H. Seon, B. Haym, W. Timothy, Dynamics of transversely vibrating beams using four engineering theories, J. Sound Vib. 225 (1999) 935–988 [Google Scholar]
  16. G.R. Cowper, The shear coefficient in Timoshenko's beam theory, J. Appl. Mech. 33 (1966) 335–340 [Google Scholar]
  17. J.R. Rieker, Y.-H. Lin, M.W. Trethewey, Discretization considerations in moving load finite element beam models, Finite elements in Analysis and Design 21 (1996) 129–144 [CrossRef] [Google Scholar]
  18. A.E. Martinez-Castro, P. Museros, A. Castillo-Linares, Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli-Euler beams traversed by moving loads, J. Sound Vib. 294 (2006) 278–297 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.