Open Access
Issue
Mécanique & Industries
Volume 10, Number 2, Mars-Avril 2009
Page(s) 109 - 120
DOI https://doi.org/10.1051/meca/2009039
Published online 23 July 2009
  1. M. Lin, F.-K. Chang, The manufacture of composite structures with a built-in network of piezoceramics, Compos. Sci. Tech. 62 (2002) 919–939 [Google Scholar]
  2. W.J. Staszewski, C. Boller, G.R. Tomlinson, Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing, Wiley and New York, 2004 [Google Scholar]
  3. Z. Su, X. Wang, W. Chen, L. Ye, D. Wang, A built-in active sensor network for health monitoring of composite structures, Smart Mater. Struct. 15 (2006) 1939–1949 [CrossRef] [Google Scholar]
  4. F.E. Scire, C.E. Teague, Piezodriven 50 Formula m range stage with nanometer resolution, Rev. Sci. Instrum. 49 (1978) 1735–1739 [CrossRef] [PubMed] [Google Scholar]
  5. S.T. Sith, D.G. Chetwynd, Foundations of ultraprecision mechanism design, Gordon and Breach Science Publishers, 1978 [Google Scholar]
  6. A.H. Slocum, Precision machine design, Prentice-Hall, Inc., 1992 [Google Scholar]
  7. D.C. Karnopp, A.K. Trikha, Comparative study of optimization techniques for shock and vibration isolation, J. Eng. Ind. Trans. ASME 91 (1969) 1128–1132 [Google Scholar]
  8. C.E. Kaplow, J.R. Velman, Active local vibration isolation applied to a flexible space telescope, J. Guid. Contr. Dynam. 3 (1980) 227–233 [CrossRef] [Google Scholar]
  9. R.M. Chalasani, Ride performance potential of active suspension systems, Part 1: Simplified analysis based on a quarter-car model, ASME Symposium on simulation and control of ground vehicles and transportation systems, Anaheim, CA, Dec. 1984 [Google Scholar]
  10. C.R. Fuller, S.J. Elliott, P.A. Nelson, Active Control of Vibration, Academic Press, 1996 [Google Scholar]
  11. Y. Meyer, T. Verdot, M. Collet, J. Baborowski, P. Muralt, Active Isolation of Electronic Micro Components with Piezoelectrically-Transduced Silicon MEMS Devices, Smart Mater. Struct. 16 (2007) 128–134 [CrossRef] [Google Scholar]
  12. Y. Meyer, M. Collet, Mixed control for robust vibration isolation: numerical energy comparison for an active micro suspension device, Smart Mater. Struct. 16 (2007) 1361–1369 [CrossRef] [Google Scholar]
  13. L. Meirovitch, Dynamics and control of structures, New-york and Wiley, 1990 [Google Scholar]
  14. A. Preumont, Vibration Control of Active Structures: An Introduction, Kluwer Academic Publishers, Dordrecht/Boston/London, 2002 [Google Scholar]
  15. M.J. Balas, Direct velocity feedback control of large space structures, J. Guid. Contr. Dynam. 2 (1979) 252–253 [CrossRef] [Google Scholar]
  16. M. Collet, V. Walter, P. Delobelle, Active Damping of a Micro-Cantilever Piezo-Composite Beam, J. Sound Vib. 260 (2003) 453–476 [CrossRef] [Google Scholar]
  17. J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev. 30 (1988) 1–68 [CrossRef] [MathSciNet] [Google Scholar]
  18. E.F. Crawley, J. de Luis, Use piezoelectric actuators as element of intelligent structures, AIAA J. 25 (1987) 1373–1385 [CrossRef] [Google Scholar]
  19. A. Baz, S. Poh, Performance of an active control system with piezoelectric actuators, J. Sound Vib. 126 (1988) 327–342 [CrossRef] [Google Scholar]
  20. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications, IEEE SMC 15 (1985) 116–1322 [Google Scholar]
  21. R.E. Bellman, I.L. Glicksberg, O. Gross, On the bang-bang control problem, Rand. Corporation, 1955 [Google Scholar]
  22. N.W. Hagood, E.F. Crawley, Damping of structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib. 142 (1991) 243–268 [CrossRef] [Google Scholar]
  23. C.L. Davis, G.A. Lesieutre, An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness, J. Sound Vib. 232 (2000) 601–617 [CrossRef] [Google Scholar]
  24. R.L. Forward, Electromechanical transducer-coupled mechanical structure with negative capacitance compensation circuit, US Patent Specification 4 (1979) 158–787 [Google Scholar]
  25. S. Behrens, A.J. Fleming, S.O.R. Moheimani, A broaband controller for shunt piezoelectric damping of structural vibration, Smart Mater. Struct. 12 (1999) 1–22 [Google Scholar]
  26. S.Y. Wu, Piezoelectric shunts with parallel R-L circuit for smart structural damping and vibration control, In Proc. SPIE Symposium on Smart Structures and Materials – Passive Damping and Isolation, 1996, pp. 259–269 [Google Scholar]
  27. J.J. Hollkamp, Mutlimodal passive vibration suppression with piezoelectric materials and resonant shunt, J. Intell. Mater. Syst. Struct. 5 (1994) [Google Scholar]
  28. S.Y. Wu, Method for multiple mode shunt damping of structural vibration using a single PZT transducer, In Proc. SPIE Symposium on Smart Structures and Materials – Smart Structures and Intelligent Systems (1998) 159–167 [Google Scholar]
  29. W.W. Clark, Vibration control with state-switching piezoelectric materials, J. Intell. Mater. Syst. Struct. 11 (2000) 263–71 [Google Scholar]
  30. L.R. Corr, W.W. Clark, A novel semi-active multi-modal vibration control law for a piezoceramic actuator, VAJ 125 (2003) 214–222 [Google Scholar]
  31. C. Richard, Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor, In Proc. SPIE Symposium on Smart Structures and Materials – Passive Damping and Isolation, 2000, pp. 288–299 [Google Scholar]
  32. L. Petit, E. Lefeuvre, C. Richard, D. Guyomar, Broadband semi passive piezoelectric technique for structural damping, In Proc. SPIE Symposium on Smart Structures and Materials – Passive Damping and Isolation, 2004, pp. 414–425 [Google Scholar]
  33. E. Lefeuvre, D. Guyomar, L. Petit, C. Richard, A. Badel, Semi passive structural damping by synchronized switching on voltage sources, SMEBA 03, Suzhou, China, May 2004 [Google Scholar]
  34. M. Tawfik, A. Baz, Experimental and spectral finite element study of plates with shunted piezoelectric patches, Int. J. Acoust. Vib. 9 (2004) 87–97 [Google Scholar]
  35. T. Takigami, T. Tomioka, Investigation to suppress bending vibration of railway vehicle carbodies using piezoelectric elements, QR of RTRI 46 (2005) 225–230 [CrossRef] [Google Scholar]
  36. M. Neubauer, R. Oleskiewcz, Suppression of brake squeal using shunted piezoceramics, J. Vib. Acoust. 130 (2008) 021005 [CrossRef] [Google Scholar]
  37. A. Belloli, P. Ermanni, Optimum placement of piezoelectric ceramic modules for vibration suppression of highly constrained structures, Smart Mater. Struct. 16 (2007) 1662–1671 [CrossRef] [Google Scholar]
  38. M.I. Frecker, Recent advances in optimization of smart structures and actuators, J. Intell. Mater. Syst. Struct. 14 (2003) 207–216 [CrossRef] [Google Scholar]
  39. S. Devasia, T. Meressi, B. Paden, E. Bayo, Piezoelectric actuator design for vibration suppression: placement and sizing, J. Guid. Contr. Dynam. 16 (1993) 859–864 [CrossRef] [Google Scholar]
  40. H. Kwakernaak, R. Sivan, Linear optimal control systems, Wiley-Interscience, 1972 [Google Scholar]
  41. A.K. Dhingra, B.H. Lee, Optimal placement of actuators in actively controlled structures, Eng. Optim. 23 (1994) 99–118 [CrossRef] [Google Scholar]
  42. A. Arbel, Controllability measures and actuator placement in oscillatory systems, Int. J. Contr. 33 (1981) 565–574 [CrossRef] [Google Scholar]
  43. A. Hac, L. Liu, Sensor and actuator location in motion control of flexible structures, J. Sound Vib. 167 (1993) 239–261 [CrossRef] [Google Scholar]
  44. A.K. Dhingra, B.H. Lee, Multiobjective design of actively controlled structures using a hybrid optimization method, Int. Jour. Num. Meth. Eng. 38 (1995) 3380–3401 [Google Scholar]
  45. S. Kondoh, C. Yatomi, K. Inoue, The positioning of sensors and actuators in the vibration control of flexible systems, JSME 33 (1992) 145–152 [Google Scholar]
  46. S.J. Kim, J.D. Jones, Influence of piezo-actuator thickness on the active vibration control of a cantilever beam, J. Intell. Mater. Syst. Struct. 6 (1995) 610–623 [CrossRef] [Google Scholar]
  47. R.A. Meric, S. Saigal, Shape sensitivity analysis of piezoelectric structures by the adjoint variable method, AIAA J. 29 (1991) 1313–1318 [CrossRef] [Google Scholar]
  48. J.K. Hwang, C.H. Choi, C.K. Song, J.M. Lee, Robust LQG control of an all-clamped thin plate with piezoelectric actuators/sensors, IEEE/ASME Trans. Mechatron. 2 (1997) 205–212 [CrossRef] [Google Scholar]
  49. M. Collet, L. Jezequel, Active control with piezo-electric layers optimization, J. Struct. Control. 1 (1995) [Google Scholar]
  50. F. Fahroo, Y. Wang, Optimal location of piezoceramic actuators for vibration suppression of a flexible stucture, in Proc. the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, 1997, pp. 1966–1971 [Google Scholar]
  51. S.Y. Yang, W.H. Huang, Is a collocated piezoelectric sensor/actuator pair feasible for an intelligent beam? J. Sound Vib. 216 (1998) 529–538 [CrossRef] [Google Scholar]
  52. P. Monnier, M. Collet, J. Piranda, Definition of mechanical design parameters to optimize efficiency of Integral Force Feedback. Struct. Contr. Health Monit. 12 (2005) 65–89 [Google Scholar]
  53. M. Naillon, R.H. Coursant, F. Besnier, Analyse de structures piézoélectriques par une méthode d'éléments finis, Acta Elec. 25 (1983) 341–362 [Google Scholar]
  54. M. Collet, K.A. Cunefare, Modal synthesis and dynamical condensation methods for accurate piezoelectric systems impedance computation, J. Intell. Mater. Syst. Struct., on-line, 2008 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.