Open Access
Issue |
Mécanique & Industries
Volume 10, Number 3-4, Mai-Août 2009
19e Congrès français de mécanique (CFM 2009)
|
|
---|---|---|
Page(s) | 217 - 221 | |
DOI | https://doi.org/10.1051/meca/2009050 | |
Published online | 05 August 2009 |
- M. Bromly, C. Hinz, Non-Fickian transport in homogeneous unstaurated repacked sand, Water Resour. Res. 40 (2004) W0740 [Google Scholar]
- E. Einstein, Investigations on the Theory of Brownian Movement, Dover New York, 1956 [Google Scholar]
- W. Feller, An Introduction to Probability Theory and its Applications, Wiley series in probability and mathematical statistics, J. Wiley and sons, New York, Chichester, Brisbane, Toronto, 1970, Vol. II [Google Scholar]
- M.T. Van Genuchten, P.J. Wierenga, Mass transfer studies in sorbing porous media, I Analytical solutions, Soil. Sci. Soc. Am. J. 33 (1976) 473 [Google Scholar]
- R. Gorenflo, F. Mainardi, A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Soliton fractal 34 (2007) 87 [CrossRef] [Google Scholar]
- R. Gorenflo, F. Mainardi, In Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi (éds.), CISM courses and lectures 378, Springer Wien, New-York, 1997 [Google Scholar]
- R. Haggerty, S.M. Gorelik, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resour. Res. 31 (1995) 2383–23 400 [Google Scholar]
- C. Latrille, Présentation et caractéristiques techniques du Banc Expérimental pour l'Étude du Transport InInsatur (BEETI), Rapport, NT DPC / SECR 07-024 indice A 2007, pp. 30 [Google Scholar]
- P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937 [Google Scholar]
- M. Levy, B. Berkowitz, Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, J. Contam. Hydrology 64 (2003) 203–206 [CrossRef] [PubMed] [Google Scholar]
- M. Magdziarz, A. Weron, K. Weron, Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation, Phys. Rev. E 75 (2007) 016708 [CrossRef] [Google Scholar]
- B. Maryshev, M. Joelson, D. Lyubimov, T. Lyubimova, M.C. Néel, Non Fickian flux for advection-dispersion with immobile periods, J. Phys. A: Math. Theor. 42 (2009) 115001 [CrossRef] [Google Scholar]
- R. Metzler, J.T. Klafter, The Random walks guide to anomalous diffusion: a fractional dynamics approach, Physics Reports 339 (2000) 1 [Google Scholar]
- S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993 [Google Scholar]
- R. Schumer, D.A. Benson, M.M. Meerschaert, B. Bauemer, Fractal mobile/immobile solute transport, Water Resour. Res. 39 (2003) 1296 [CrossRef] [Google Scholar]
- N. Tufenkji, M. Elimelech, Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition, Environ. Sci. Technol. 39 (2005) 3620–3629 [CrossRef] [PubMed] [Google Scholar]
- Y. Zhang, D.A. Benson, B. Bauemer, Moment analysis for spatiotemporal fractional dispersion, Water Resour. Res. 445 (2008) W05404 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.