Open Access
Mécanique & Industries
Volume 11, Number 3-4, Mai-Août 2010
Giens 2009
Page(s) 271 - 276
Published online 27 October 2010
  1. C.J. Roy, Review of code and solution verification procedures for computational simulation, J. Comput. Phys. 205 (2005) 131–156 [CrossRef] [Google Scholar]
  2. S. Steinberg, P.J. Roache,Symbolic manipulation and computational fluid dynamics, J. Comput. Phys. 57 (1985) 251–284 [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Pelletier, É. Turgeon, D. Lacasse, J. Borggaard,Adaptivity, Sensivity and Uncertainty: Towards Standards in CFD, In 39th AIAA Aerospace Sciences Meeting and Exibit, 2001 [Google Scholar]
  4. K. Salari, P. Knupp,Code verification by the method of manufactured solutions, Sandia National Laboratories, 2000 [Google Scholar]
  5. P.J. Roache,Code verification by the method of manufactured solutions, J. Fluids Eng. 124 (2002) 4–10 [CrossRef] [Google Scholar]
  6. P.J. Roache, Verification and validation in computational science and engineering,Hermosa, Albuquerque, 1998 [Google Scholar]
  7. AIAA, Guide for the Verification and Validation of Computational Fluid Dynamics Simulations.Number G-077-1998. American Institute for Aeronautics and Astronautics, 1998 [Google Scholar]
  8. ASME, Guide for Verification and Validation in Computational Solid Mechanics,Number V&V 10-2006, American Society of Mechanics Engineers, 2006, [Google Scholar]
  9. L.E. Schwer, An overview of the PTC 60/V&V 10 : guide for verification and validation in computational solid mechanics: Transmitted by l. e. schwer, chair ptc 60/v&v 10 Eng. Comput. 23 (2007) 245–252 [Google Scholar]
  10. É. Chamberland, A. Fortin, M. Fortin, Comparison of the performance of some finite element discretizations for large deformation elasticity problems, Comput. Struct. 88 (2010) 664–673 [Google Scholar]
  11. R.L. Taylor, P. Papadopoulos, in: Wriggers P., Wagner W. (eds.), Computational methods in nonlinear mechanics, chapter On a patch test for contact problems in two dimensions,Springer, 1991, pp. 690–702 [Google Scholar]
  12. M.A. Crisfield,Re-visiting the contact patch test, Int. J. Numer. Meth. Eng. 48 (2000) 435–449 [CrossRef] [Google Scholar]
  13. N. El-Abbasi, K.-J. Bathe,Stability and patch test performance of contact discretizations and a new solution algorithm, Comput. Struct. 79 (2001) 1473–1486 [Google Scholar]
  14. N. Tardieu, F. Youbissi, É. Chamberland,Un algorithme de gradient conjugué projeté préconditionné pour la résolution de problèmes unilatéraux, C. R. Mécanique 336 (2008) 840–845 [CrossRef] [Google Scholar]
  15. J. Bonet, D.R. Wood, Nonlinear continuum mechanics for finite element analysis,Cambridge University Press, Cambridge, 1997 [Google Scholar]
  16. K.J. Bathe, F. Brezzi,Stability of finite element mixed interpolation for contact problems, Rend. Mat. Acc. Linceis. 9 (2001) 159–166 [Google Scholar]
  17. P. Coorevits, P. Hild, K. Lhalouani, T. Sassi,Mixed finite element methods for unilateral problems: convergence analysis and numerical studies, Math. Comput. 71 (2002) 1–25 [Google Scholar]
  18. É. Chamberland,Feuille Maple pour la méthode des solutions manufacturées en grandes déformations,˜ericc/mms [Google Scholar]
  19. P. Hild, P. Laborde,Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math. 41 (2002) 401–421 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.