Open Access
Issue
Mécanique & Industries
Volume 11, Number 6, Novembre-Décembre 2010
VCB (Vibrations, Chocs et Bruits)
Page(s) 521 - 529
DOI https://doi.org/10.1051/meca/2010068
Published online 03 February 2011
  1. K.L. Ekinci, M.L. Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum. 76 (2005) 061101 [CrossRef] [Google Scholar]
  2. X.M.H. Huang, K.L. Ekinci, M.L. Roukes, Ultrasensitive nanoelectromechanical mass detection, Appl. Phys. Lett. 84 (2004) 4469–4471 [CrossRef] [Google Scholar]
  3. K. Jensen, K. Kim, A. Zettl, An atomic-resolution nanomechanical mass sensor, Nature Nanotechnol. 3 (2008) 533–537 [CrossRef] [Google Scholar]
  4. C.T. Nguyen, Micromechanical components for miniaturized low-power communications, in 1999 IEEE MTT-S international Microwave Symposium FR MEMS Workshop, 1999, pp. 48–77 [Google Scholar]
  5. A.C.W. Nguyen, C.T.D. Hao, Tunable, switchable, high-q vhf microelectromechanical bandpass filters, in IEEE International Solid-State Circuits Conf., 1999, Vol. 448, p. 78 [Google Scholar]
  6. A. Cho, Physics-researchers race to put the quantum into mechanics, Science 299 (2003) 36–37 [CrossRef] [PubMed] [Google Scholar]
  7. M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Approaching the quantum limit of a nanomechanical resonator, Science 304 (2004) 74–77 [CrossRef] [PubMed] [Google Scholar]
  8. N. Kacem, S. Hentz, D. Pinto, B. Reig, V. Nguyen, Nonlinear dynamics of nanomechanical beam resonators: improving the performance of nems-based sensors, Nanotechnology 20 (2009) 275501 [CrossRef] [PubMed] [Google Scholar]
  9. N. Kacem, J. Arcamone, F. Perez-Murano, S. Hentz, Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for high sensitive NEMS gas/mass sensors applications, J. Micromech. Microeng. 20 (2010) 04502 [Google Scholar]
  10. B.G. Sumpter, D.W. Noid, The onset of instability in nanostructures: the role of nonlinear resonance, J. Chem. Phys. 102 (1995) 6619–6622 [CrossRef] [Google Scholar]
  11. X.L. Feng, Phase noise and frequency stability of very-high frequency silicon nanowire nanomechanical resonators, in 14th International Conference on Solid-State Sensors, Actuators and Microsystems, 2007, pp. 327–30 [Google Scholar]
  12. R.T. Howe, T.A. Roessig, A.P. Pisano, Nonlinear mixing in surface-micromachined tuning fork oscillators, in Frequency Control Symposium, 1997, Proc. IEEE Int., 1997, pp. 778–782 [Google Scholar]
  13. V. Kaajakari, J.K. Koskinen, T. Mattila, Phase noise in capacitively coupled micromechanical oscillators, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 52 (2005) 2322–2331 [Google Scholar]
  14. C. Seoánez, F. Guinea, A.H. Castro Neto, Dissipation in graphene and nanotube resonators, Phys. Rev. B 76 (2007) 125427 [CrossRef] [Google Scholar]
  15. V. Sazonova, A tunable carbon nanotube resonator, Ph.D. Dissertation, Cornell University, Ithaca, New York, 2006 [Google Scholar]
  16. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford, 3rd edition, 1986 [Google Scholar]
  17. H. Nishiyama, M. Nakamura, Capacitance of a strip capacitor, IEEE Trans. Compon. Hybrids Manuf. Technol. 13 (1990) 417–423 [Google Scholar]
  18. A.H. Nayfeh, M.I. Younis, E.M. Abdel-Rahman, Dynamic pull-in phenomenon in mems resonators, Nonlinear Dyn. 48 (2007) 153–163 [Google Scholar]
  19. C. Thouzé, O. Thomas, Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry, Int. J. Non-Linear Mech. 41 (2006) 678–692 [Google Scholar]
  20. N. Kacem, Nonlinear dynamics of M&NEMS resonant sensors: design strategies for performance enhancement, Ph.D. Dissertation, Insa-Lyon, CEA-LETI, Grenoble, 2010 [Google Scholar]
  21. A. Husain, J. Hone, H.W. Ch. Postma, X.M.H. Huang, T. Drake, M. Barbic, A. Scherer, M.L. Roukes, Nanowire-based very-high-frequency electromechanical resonator, Appl. Phys. Lett. 83 (2003) 1240–1242 [CrossRef] [Google Scholar]
  22. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, 1979 [Google Scholar]
  23. C. Gui, R. Legtenberg, H.A.C. Tilmans, J.H.J. Fluitman, M. Elwenspoek, Nonlinearity and hysteresis of resonant strain gauges, in Micro Electro Mechanical Systems, 1995, MEMS ’95, Proc. IEEE, 1995, pp. 157–162 [Google Scholar]
  24. L.C. Shao, M. Palaniapan, W.W. Tan, The nonlinearity cancellation phenomenon in micromechanical resonators, J. Micromech. Microeng. 18 (2008) 065014 [CrossRef] [Google Scholar]
  25. N. Kacem, S. Hentz, Bifurcation topology tuning of a mixed behavior in nonlinear micromechanical resonators, Appl. Phys. Lett. 95 (2009) 183104 [CrossRef] [Google Scholar]
  26. V. Kaajakari, T. Mattila, A. Lipsanen, A. Oja, Nonlinear mechanical effects in silicon longitudinal mode beam resonators, Sens. Actuators A: Physical 120 (2005) 64–70 [CrossRef] [Google Scholar]
  27. P.M. Osterberg, S.D. Senturia, M-test: A test chip for mems material property measurement using electrostatically actuated test structures, J. Microelectromech. Syst. 6 (1997) 107–118 [Google Scholar]
  28. N. Kacem, S. Hentz, H. Fontaine, V. Nguyen, P. Robert, B. Legrand, L. Buchaillot, From mems to nems: Modelling and characterization of the non linear dynamics of resonators, a way to enhance the dynamic range, in Int. Conf. Nanotech, Boston, Massachusetts, USA, 2008 [Google Scholar]
  29. H.M. Ouakad, M.I. Younis, Nonlinear dynamics of electrically-actuated carbon nanotube resonator, J. Comput. Nonlinear Dynam. 5 (2010) 011009 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.