Open Access
Issue
Mécanique & Industries
Volume 11, Number 6, Novembre-Décembre 2010
VCB (Vibrations, Chocs et Bruits)
Page(s) 453 - 463
DOI https://doi.org/10.1051/meca/2010047
Published online 09 December 2010
  1. F. Georgiades, M. Peeters, G. Kerschen, J.C. Golinval, Modal analysis of a nonlinear periodic structure with cyclic symmetry, AIAA J. 47 (2009) 195–216 [Google Scholar]
  2. S. Samaranayake, Subharmonic oscillations in harmonically excited mechanical systems with cyclic symmetry, J. Sound Vib. 206 (1997) 39–60 [Google Scholar]
  3. A.F. Vakakis, Nonlinear normal mode and their application in vibration theory: An overview, Mech. Syst. Signal Process. 11 (1996) 3–22 [Google Scholar]
  4. G. Kerschen, M. Peeters, J.C. Golinval, A.F. Vakakis, Nonlinear normal modes, part I: A useful framework for the structural dynamicist, Mech. Syst. Signal Process. 23 (2009) 170–194 [Google Scholar]
  5. M. Peeters, G. Kerschen, R. Viguié, G. Sérandour, J.C. Golinval, Nonlinear normal modes, part II: toward a practical computation using continuation technique, Mech. Syst. Signal Process. 23 (2009) 195–216 [Google Scholar]
  6. A.F. Vakakis, Normal mode and localisation in nonlinear systems, Wiley-Interscience, 1996 [Google Scholar]
  7. R. Benamar, M.M.K. Bennouna, R.G. White, The effect of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, part II: fully clamped rectangular isotropic plates, J. Sound Vib. 164 (1993) 295–316 [Google Scholar]
  8. M. Amabili, Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections, J. Sound Vib. 291 (2006) 539–565 [Google Scholar]
  9. K.M. Liew, C.M Wang, pb2-Rayleigh-Ritz method for general plate analysis, Eng. Struct. 15 (1993) 55–60 [Google Scholar]
  10. D. Laxalde, F. Thouverez, J.J. Sinou, J.P. Lombard, Qualitative analysis of forced responce of blisks with friction ring dampers, Eur. J. Mech. Solids 36 (2007) 676–687 [Google Scholar]
  11. D. Laxalde, F. Thouverez, Complex nonlinear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces, J. Sound Vib. 322 (2009) 1009–1025 [Google Scholar]
  12. R. Lewandowski, Computational formulation for periodic vibration of geometrically nonlinear structures-part 1: theoretical background, Int. J. Solids Struct. 34 (1997) 1925–1947 [Google Scholar]
  13. P. Ribeiro, M. Petyt, Nonlinear vibration of plates by the hierarchical finite element and contination method, Int. J. Mech. Sci. 41 (1999) 437–459 [Google Scholar]
  14. A.H. Nayfey, B. Balanchandran, Applied nonlinear dynamics, Wiley-Interscience, 1995 [Google Scholar]
  15. M. Ribeiro, M. Petyt, Nonlinear free vibration of isotropic plates with internal resonance, Int. J. Non-Linear Mech. 35 (2000) 263–278 [Google Scholar]
  16. R.M. Rosenberg, On nonlinear vibration of systems with many degrees of freedom, Adv. Appl. Mech. (1966) 155–242 [Google Scholar]
  17. E. Sarrouy, Analyse globale de systèmes mécaniques non-linéaires, Application à la dynamique des rotors, Ph.D. thesis, École Centrale Lyon, 2008 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.