Open Access
Issue
Mécanique & Industries
Volume 12, Number 3, 2011
CFM 2011
Page(s) 157 - 162
DOI https://doi.org/10.1051/meca/2011117
Published online 20 July 2011
  1. S. Candel, Combustion dynamics and control: Progress and challenges, Proc. Comb. Inst. 29 (2002) 1–28 [CrossRef] [Google Scholar]
  2. A. Fayoux, K. Zahringer, O. Gicquel, J. Rolon, Experimental and numerical determination of heat release in counterflow premixed laminar flames, Proc. Comb. Inst. 30 (2005) 251–257 [CrossRef] [Google Scholar]
  3. B. Ayoola, R. Balachandran, J. Frank, E. Mastorakos, C. Kaminski, Spatially resolved heat release rate measurements in turbulent premixed flames, Comb. Flame 144 (2006) 1–16 [CrossRef] [Google Scholar]
  4. I.R. Hurle, R.B. Price, T.M. Sugden, A. Thomas, Sound emission from open turbulent premixed flames, Royal Soc. London Proc. Ser. A 303 (1968) 409–427 [Google Scholar]
  5. R. Price, I. Hurle, T. Sugden, Optical studies of the generation of noise in turbulent flames, Symp. (Int.) on Combustion 12 (1969) 1093–1102 [CrossRef] [Google Scholar]
  6. B. Higgins, M.Q. McQuay, F. Lacas, S. Candel, An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames, Fuel 80 (2001) 1583–1591 [CrossRef] [Google Scholar]
  7. Y. Hardalupas, M. Orain, Local measurements of the time dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame, Comb. Flame 139 (2004) 188–207 [CrossRef] [Google Scholar]
  8. M. Lauer, T. Sattelmayer, On the adequacy of chemiluminescence as a measure for heat release in turbulent flames with mixture gradients, J. Eng. Gas Turbine. Power 132 (2010) 1–8 [Google Scholar]
  9. T. Lieuwen, Theory of high frequency acoustic wave scattering by turbulent flames, Comb. Flame 126 (2001) 1489–1505 [CrossRef] [Google Scholar]
  10. T. Lieuwen, R. Rajaram, Y. Neumeier, S. Nair, Measurements of incoherent acoustic wave scattering from turbulent premixed flames, Proc. Comb. Inst. 29 (2002) 1809–1815 [CrossRef] [Google Scholar]
  11. G. Searby, Instability phenomena during flame propagation. In Combustion Phenomena: Selected mechanisms of flame formation, propagation, and extinction, in: J. Jarosinski and B. Veyssiere (ed.), CRC Press, New York, 2008, pp. 67–79 [Google Scholar]
  12. M. Fleifil, A.M. Annaswamy, Z.A. Ghoneim, A.F. Ghoniem, Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results, Comb. Flame 106 (1996) 487–510 [CrossRef] [Google Scholar]
  13. T. Schuller, D. Durox, S. Candel, A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V flame dynamics, Comb. Flame 134 (2003) 21–34 [CrossRef] [Google Scholar]
  14. S. Ducruix, D. Durox, S. Candel, Theoretical and experimental determinations of the transfer function of a laminar premixed flame, Proc. Comb. Inst. 28 (2000) 765–773 [CrossRef] [Google Scholar]
  15. F. Baillot, D. Durox, R. Prud’homme, Experimental and theoretical study of a premixed vibrating flame, Comb. Flame 88 (1992) 149–168 [CrossRef] [Google Scholar]
  16. S. Merrill, Radar Handbook, McGraw-Hill, New York, 2008 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.