Open Access
Issue
Mécanique & Industries
Volume 12, Number 3, 2011
CFM 2011
Page(s) 163 - 167
DOI https://doi.org/10.1051/meca/2011108
Published online 20 July 2011
  1. M. Manga, H.A. Stone, Low Reynolds number motion of bubbles, drops and rigid spheres through fluid-fluid interfaces, J. Fluid Mech. 287 (1995) 279–298 [CrossRef] [Google Scholar]
  2. I. Eames, G. Duursma, Displacement of horizontal layers by bubbles injected into fluidised beds, Chem. Eng. Sci. 52 (1997) 2697–2705 [CrossRef] [Google Scholar]
  3. J.W.M. Bush, I. Eames, Fluid displacement by high Reynolds number bubble motion in a thin gap, Int. J. Multiphase Flow 24 (1998) 411–430 [CrossRef] [Google Scholar]
  4. M. Kemiha, E. Olmos, W. Fei, S. Poncin, H.Z. Li, Passage of a gas bubble through a liquid-liquid interface, Ind. Eng. Chem. Res. 46 (2007) 6099–6104 [Google Scholar]
  5. N. Dietrich, S. Poncin, S. Pheulpin, H.Z. Li, Passage of a bubble through a liquid-liquid interface, AIChE J. 54 (2008) 594–600 [CrossRef] [Google Scholar]
  6. P.J. Shopov, P.D. Minev, The unsteady motion of a bubble or drop towards a liquid-liquid interface, J. Fluid Mech. 235 (1992) 123–141 [CrossRef] [Google Scholar]
  7. J. Cranga, P. Gardin, D. Huin, J. Magnaudet, Influence of surface pressure and slag layer on bubble bursting in degasser systems, Computational Modeling of Materials, Minerals, and Metals Processing, 2001, pp. 105–114 [Google Scholar]
  8. T. Bonometti, Développement d’une méthode de simulation d’écoulements à bulles et à gouttes, Thèse de doctorat, Institut National Polytechnique de Toulouse, 2005 [Google Scholar]
  9. F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar, M. Quintard, Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transp. Porous Media 82 (2010) 463–483 [Google Scholar]
  10. T. Bonometti, J. Magnaudet, An interface-capturing method for incompressible two-phase flows, Validation and application to bubble dynamics, Int. J. Multiphase Flow 33 (2007) 109–133 [CrossRef] [Google Scholar]
  11. J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–354 [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Boyer, C. Lapuerta, Study of a three component Cahn-Hilliard flow model, ESAIM: M2AN, 40 (2006) 653–687 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.