Open Access
Issue |
Mécanique & Industries
Volume 12, Number 6, 2011
|
|
---|---|---|
Page(s) | 513 - 531 | |
DOI | https://doi.org/10.1051/meca/2011146 | |
Published online | 06 January 2012 |
- C.G. Armstrong, S. Bridgett, R. Donaghy, W. Mc Cune, R. McKeag, D. Robinson, Techniques for interactive and automatic idealisation of cad models, numerical grid generation in computational field simulations, Greenwich, UK, 1998, pp. 643–662 [Google Scholar]
- C.S. Chong, A.S. Kumar, K.H. Lee, Automatic solid decomposition and reduction for non-manifold geometric model generation, Comput. Aided Design 36 (2004) 1357–1369 [CrossRef] [Google Scholar]
- R.J. Donaghy, W. McCune, S.J. Bridgett, C.G. Armstrong, D.J. Robinson, R.M. McKeag, Dimensional Reduction of Analysis Models, in: S.N. Laboratories (éd.), International Meshing Roundtable, Pittsburgh, Pennsylvania, 1996, pp. 307–320 [Google Scholar]
- D.J. Monaghan, I.W. Doherty, D. McCourt, C.G. Armstrong, Coupling 1D Beams to 3D Bodies, International Meshing Roundtable, Dearborn, USA, 1998, pp. 1–8 [Google Scholar]
- K. Suresh, Generalization of the Kantorovich Method of Dimensional Reduction, International Meshing Roundtable, Santa Fe, New Mexico, 2003, pp. 261–270 [Google Scholar]
- M. Mantyla, An introduction to solid modeling, 1988 [Google Scholar]
- M.E. Mortenson, Geometric Modeling, 1985 [Google Scholar]
- W. Mc Cune, C.G. Armstrong, D. Robinson, Mixed-dimensional coupling in finite element models, Int. J. Numer. Methods Eng. 49 (2000) 725–750 [CrossRef] [Google Scholar]
- K. Shim, D.J. Monaghan, A. CG, Mixed dimensional coupling in finite element stress analysis, International Meshing Roundtable Newport Beach, California 2001, pp. 269–277 [Google Scholar]
- H. Ben Dhia, Approches Locales-Globales Méthode Arlequin, 5e Colloque National de Calcul des Structures, Giens, France, 2005, pp. 21–32 [Google Scholar]
- J.-C. Craveur, D. Marceau, De la CAO au calcul, Dunod, Paris, 2001 [Google Scholar]
- D.J. Allman, A compatible triangular element including vertex rotations for plane elasticity analysis, Comput. Struct. 19 (1984) 1–8 [Google Scholar]
- T.P. Pawlak, S.M. Yunus, Solid elements with rotational degrees of freedom: Part II – tetrahedron elements, Int. J. Numer. Methods Eng. 31 (1991) 593–610 [CrossRef] [Google Scholar]
- K.Y. Sze, Y.S. Pan, Hybrid stress tetrahedral elements with Allman’s rotational D.O.F.s, Int. J. Numer. Methods Eng. 48 (2000) 1055–1070 [CrossRef] [Google Scholar]
- S. Bournival, J.-C. Cuilliere, V. Francois, A mesh-based method for coupling 1D and 3D finite elements, Design and Modelling of Mechanical Systems, Monastir, Tunisia, 2007 [Google Scholar]
- P.J. Frey, P.-L. George, Maillages applications aux elements finis, Hermes Sciences, Paris, 1999 [Google Scholar]
- J.-C. Cuilliere, An adaptive method for the automatic triangulation of 3D parametric surfaces, Comput. Aided Design 30 (1998) 139–149 [CrossRef] [Google Scholar]
- V. Francois, J.-C. Cuilliere, An a priori adaptive 3D advancing front mesh generator integrated to solid modeling, Recent Advances in Integrated Design and Manufacturing in Mechanical Engineering. (2003) 337–346 [Google Scholar]
- S. Bournival, J.-C. Cuillière, V. François, A mesh-geometry based method for coupling 1D and 3D elements, Adv. Eng. Softw. 41 (2010) 838–858 [CrossRef] [Google Scholar]
- J.-C. Cuillière, S. Bournival, V. François, A mesh-geometry-based solution to mixed-dimensional coupling, Comput. Aided Design 42 (2010) 509–522 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.