Giens 2011
Open Access
Issue
Mechanics & Industry
Volume 13, Number 6, 2012
Giens 2011
Page(s) 395 - 403
DOI https://doi.org/10.1051/meca/2012035
Published online 05 April 2013
  1. G. Sachs, Z. Ver, Zur ableilung einer fleissbedingung, Z. Ver. Dtsch. Ing. 72 (1928) 734–736 [Google Scholar]
  2. E. Schmid, Yield point of a crystals: critical shear stress law, in Proc. 1st Int. Congr. Appl. Mech., Delft, Neetherland, 1924, p. 342 [Google Scholar]
  3. G.I. Taylor, The latent energy remaining in a metal after cold working, Proc. Roy. Soc. London Series A, Containing Papers of a Mathematical and Physical Character 62 (1938) 307–326 [Google Scholar]
  4. A. Cottrell, Dislocations and plastic flow in crystals, Oxford at the Clarendon Press, 1953 [Google Scholar]
  5. C. Barrett, Structure of Metals, McGraw-Hill Book Company, Inc., New York, 1948 [Google Scholar]
  6. W. Boas, M. Hargreaves, On the inhomogeneity of plastic deformation in the crystals of an aggregate, Proc. Roy. Soc. A 193 (1948) 89–97 [CrossRef] [Google Scholar]
  7. W.S. Farren, G.I. Taylor, The heat developed during plastic extension of metals. Proc. Roy. Soc. London Series A, Containing Papers of a Mathematical and Physical Character 107 (1925) 422–451 [Google Scholar]
  8. G.I. Taylor, H. Quinney, Proc. Roy. Soc. London Series A, Containing Papers of a Mathematical and Physical Character 143 (1934) 307 [Google Scholar]
  9. H. Quinney, G.I. Taylor, The emission of the latent energy due to previous cold working when a metal is heated. Proc. Roy. Soc. London Series A, Mathematical and Physical Sciences 163 (1937) 157–181 [CrossRef] [Google Scholar]
  10. M.B. Bever, D.L. Holt, A.L. Titchener, The stored energy of cold work, Progr. Mater. Sci. 17 (1973) 5–177 [CrossRef] [Google Scholar]
  11. A. Chrysochoos, J.C. Chezeaux, H. Caumon, Analyse thermomécanique des lois de comportement par thermographie infrarouge, Revue de physique appliquée (Paris) 24 (1989) 215–225 [CrossRef] [EDP Sciences] [Google Scholar]
  12. J. Hodowany, G. Ravichandran, A. Rosakis, P. Rosakis, Partition of plastic work into heat and stored energy in metals, Experim. Mech. 40 (2000) 113–123 [CrossRef] [Google Scholar]
  13. D. Macdougall, Determination of the plastic work converted to heat using radiometry, Experim. Mech. 40 (2000) 298–306 [CrossRef] [Google Scholar]
  14. W. Oliferuk, W.A. Swiatnicki, M.W. Grabski, Rate of energy storage and microstructure evolution during the tensile deformation of austenitic steel, Mater. Sci. Eng. A 161 (1993) 55–63 [CrossRef] [Google Scholar]
  15. L.M. Clarebrough, M.E. Hargreaves, G.W. West, The release of energy during annealing of deformed metals, Proc. Roy. Soc. A 232 (1955) 252–270 [CrossRef] [Google Scholar]
  16. W. Oliferuk, W.A. Swiatnicki, M.W. Grabski, Effect of the grain size on the rate of energy storage during the tensile deformation of an austenitic steel, Mater. Sci. Eng. A 197 (1995) 49–58 [CrossRef] [Google Scholar]
  17. C. Badulescu, M. Grédiac, H. Haddadi, J.D. Mathias, X. Balandraud, H.S. Tran, Applying the grid method and infrared thermography to investigate plastic deformation in aluminium multicrystal, Mech. Mater. 43 (2011) 36 [CrossRef] [Google Scholar]
  18. A. Saai, H. Louche, L. Tabourot, H. Chang, Experimental and numerical study of the thermo-mechanical behavior of al bi-crystal in tension using full field measurements and micromechanical modeling, Mech. Mater. 42 (2010) 275–292 [CrossRef] [Google Scholar]
  19. L. Bodelot, E. Charkaluk, L. Sabatier, P. Dufrénoy, Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by digital image correlation and infrared thermography, Mech. Mater. 43 (2011) 654–670 [CrossRef] [Google Scholar]
  20. L. Bodelot, L. Sabatier, E. Charkaluk, P. Dufrénoy, Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316l steel, Mater. Sci. Eng. A 501 (2009) 52–60 [CrossRef] [Google Scholar]
  21. L. Allais, M. Bornert, T. Bretheau, D. Caldemaison, Experimental characterization of the local strain field in a heterogeneous elastoplastic material, Acta Metall. Mater. 42 (1994) 3865–3880 [CrossRef] [Google Scholar]
  22. F. Lagattu, F. Bridier, P. Villechaise, J. Brillaud, In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique, Mat. Charac. 56 (2006) 10–18 [CrossRef] [Google Scholar]
  23. E. Héripré, M. Dexet, J. Crépin, L. Gélébart, A. Roos, M. Bornert, D. Caldemaison, Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials, Int. J. Plas. 23 (2007) 1512–1539 [CrossRef] [Google Scholar]
  24. A.E. Bartali, V. Aubin, S. Degallaix, Fatigue damage analysis in a duplex stainless steel by digital image correlation technique. Fat. Frac. Engng. Mat. Struct. 31 (2007) 137–151 [CrossRef] [Google Scholar]
  25. F. Hild, B. Raka, M. Baudequin, S. Roux, F. Cantelaube, Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation, Appl. Opt. 41 (2002) 6815–6828 [CrossRef] [PubMed] [Google Scholar]
  26. H. Pron, C. Bissieux, Focal plane array infrared cameras as research tools, QIRT J. 1 (2004) 229–240 [CrossRef] [Google Scholar]
  27. H. Louche, A. Chrysochoos, Thermal and dissipative effects accompanying lüders band propagation, Mater. Sci. Eng.: A 307 (2001) 15–22 [CrossRef] [Google Scholar]
  28. B. Berthel, B. Wattrisse, A. Chrysochoos, A. Galtier, Thermographic analysis of fatigue dissipation properties of steel sheets, Strain 43 (2007) 273–279 [CrossRef] [Google Scholar]
  29. L. Priester, Joints de grains et plasticité cristalline, Hermes Science Publications, 2011 [Google Scholar]
  30. C. Nan, R. Birringer, Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model, Phys. Rev. B 57 (1998) 8264–8268 [CrossRef] [Google Scholar]
  31. A. Kelly, K. Knowles, Crystallography and crystal defects, John Wiley and Sons, 2012 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.