Giens 2011
Open Access
Issue
Mechanics & Industry
Volume 13, Number 6, 2012
Giens 2011
Page(s) 381 - 393
DOI https://doi.org/10.1051/meca/2012026
Published online 02 January 2013
  1. L.J. Malvar, J.E Crawford, Dynamic increase factors for concrete, In 28th Department of defense explosives safety seminar, Orlando, FL, 1998 [Google Scholar]
  2. J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein, C.R. Siviour, Review of experimental techniques for high rate deformation and shock studies, Int. J. Impact Eng. 30 (2004) 725–775 [Google Scholar]
  3. T. George, Gray III, Classic split Hopkinson bar testing, ASM Int. 8 (2000) 462–476 [Google Scholar]
  4. J.W. Tedesco, C.A. Ross, S.T. Kuennen, Experimental and numerical analysis of high strain rate splitting-tensile tests, ACI Mater. J. 90 (1993) 162–169 [Google Scholar]
  5. B. Erzar, P. Forquin, An experimental method to determine the tensile strength of concrete at high rates of strain, Exp. Mech. 50 (2010) 941–955 [Google Scholar]
  6. F. Jiang, K.S. Vecchio, Hopkinson bar loaded fracture experimental technique : A critical review of dynamic fracture toughness tests, Appl. Mech. Rev. 62 (2009) 060802 [Google Scholar]
  7. F. Delvare, J.L. Hanus, P. Bailly, A non-equilibrium approach to processing Hopkinson bar bending test data : Application to quasi-brittle materials, Int. J. Impact Eng. 37 (2010) 1170–1179 [CrossRef] [Google Scholar]
  8. NF EN 12390-1, Testing hardened concrete – Part 1 : Shape, dimensions and other requirements for specimens and moulds, AFNOR, 1999 [Google Scholar]
  9. NF EN 12390-5, Testing hardened concrete – Part 5 : Flexural strength of test specimen, Afnor, 2001 [Google Scholar]
  10. T. Yokoyama, K. Kishida, A novel impact three-point bend test method for determining dynamic fracture-initiation toughness, Exp. Mech. 29 (1989) 188–194 [CrossRef] [Google Scholar]
  11. G. Gary, J.R. Klepaczko, H. Zhao, Correction de dispersion pour l’analyse des petites déformations aux barres de Hopkinson, In Colloque C3, supplément au J. Phys. III, Vol. 1, 1991, pp. 403–410 [Google Scholar]
  12. H. Zhao, G. Gary, On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains, Int. J. Solids Struct. 33 (1996) 3363–3375 [Google Scholar]
  13. D. Mohr, G. Gary, B. Lundberg, Evaluation of stress-strain curve estimates in dynamic experiments, Int. J. Impact Eng. 37 (2010) 161–169 [Google Scholar]
  14. V. Ditkine, A. Proudnikov, Calcul opérationnel, Editions MIR, Moscou, 1979 [Google Scholar]
  15. CASTEM 2000, Code de calcul pour l’analyse de structures par la méthode des éléments finis. Guide d’utilisation, Commissariat à l’Énergie Atomique, DEN/DM2S/SEMT/LM2S, Gif-sur-Yvette, France, 1998 [Google Scholar]
  16. W.L. Cowell, Dynamic properties of plain Portland cement concrete, Technical Report R447, Naval Civil Engineering Laboratory, Port Hueneme, CA, 1966 [Google Scholar]
  17. F.M. Mellinger, D.L. Birkimer, Measurement of stress and strain on cylindrical test specimens of rock and concrete under impact loading, Technical Report 4-46, U.S. Army Corps of Engineers, Ohio River Division Laboratories, Cincinnati, Ohio, 1966 [Google Scholar]
  18. D.L. Birkimer, Critical Normal Fracture Strain of Portland Cement Concrete, Ph.D. thesis, University of Cincinnati, 1968 [Google Scholar]
  19. J. Takeda, H. Tachikawa, Deformation and fracture of concrete subjected to dynamic load, In Mechanical Behavior of Materials, volume IV, Kyoto, 1971 [Google Scholar]
  20. M.K. McVay, Spall damage of concrete structures, Technical Report SL-88-22, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, 1988 [Google Scholar]
  21. T.H. Antoun, Constitutive/failure model for the static and dynamic behaviors of concrete incorporating effects of damage and anisotropy, Ph.D. thesis, University of Dayton, Ohio, 1991 [Google Scholar]
  22. R. John, T. Antoun, A.M. Rajendran, Effect of strain rate and size on tensile strength of concrete. In APS Topical Conference on Shock Compression of Condensed Matter, Williamsburg, VA, 1992, pp. 501–504 [Google Scholar]
  23. C.A. Ross, P.Y. Thompson, J.W. Tedesco, Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression, ACI Mater. J. 86 (1989) 475–481 [Google Scholar]
  24. P. Rossi, F. Toutlemonde, Effect of loading rate on the tensile behavior of concrete : Description of the physical mechanisms, Mater. Struct. 29 (1996) 116–118 [CrossRef] [Google Scholar]
  25. F. Toutlemonde, Résistance au choc des structures en béton – Du comportement du matériau au calcul des ouvrages, Ph.D. thesis, Laboratoire Central des Ponts et Chausseés, Paris, France, 1995 [Google Scholar]
  26. J. Klepaczko, A. Brara, An experimental method for dynamic tensile testing of concrete by spalling, Int. I. Impact Eng. 25 (2001) 387–409 [Google Scholar]
  27. H. Wu, Q. Zhang, F. Huang, Q. Jin, Experimental and numerical investigation on the dynamic tensile strength of concrete, Int. J. Impact Eng. 32 (2005) 605–617 [Google Scholar]
  28. H. Schuler, C. Mayrhofer, K. Thoma, Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates, Int. J. Impact Eng. 32 (2006) 1635–1650 [CrossRef] [Google Scholar]
  29. J. Weerheijm, J.C.A.M. Van Doormaal, Tensile failure of concrete at high loading rates : New test data on strength and fracture energy from instrumented spalling tests, Int. J. Impact Eng. 34 (2007) 609–626 [Google Scholar]
  30. UFC-340-02, Unified facilities criteria 3-340-02, structures to resist the effects of accidental explosions, US Department of Defense, Washington, DC, USA, 2008 [Google Scholar]
  31. P. Rossi, Influence of cracking in the presence of free-water on the mechanical behaviour of concrete, Magazine Concrete Res. 43 (1991) 53–57 [CrossRef] [Google Scholar]
  32. F. Hild, C. Denoual, P. Forquin, X. Brager, On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials, Comput. Struct. 81 (2005) 1241–1253 [CrossRef] [Google Scholar]
  33. F. Pierron, M. Sutton, V. Tiwari, Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar, Experim. Mech. 51 (2011) 537–563 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.