Open Access
Issue
Mechanics & Industry
Volume 15, Number 3, 2014
Page(s) 225 - 232
DOI https://doi.org/10.1051/meca/2014029
Published online 30 May 2014
  1. X. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy 97 (2003) 481–494 [CrossRef] [PubMed] [Google Scholar]
  2. J. Pei, F. Tian, T. Thundat, Glucose biosensor based on the microcantilever, Anal. Chem. 76 (2004) 292–297 [CrossRef] [PubMed] [Google Scholar]
  3. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703–4710 [CrossRef] [Google Scholar]
  4. A.C. Eringen, Edelen DGB On nonlocal elasticity, Int. J. Eng. Sci. 10 (1972) 233–248 [CrossRef] [Google Scholar]
  5. A. Khajeansari, G.H. Baradaran, Surface effect investigation for static bending of nanowires resting on elastic substrate using Timoshenko beam theory in tandem with the Laplace-Young equation, Mechanics & Industry 13 (2012) 163–174 [CrossRef] [EDP Sciences] [Google Scholar]
  6. R.A. Toupin, Elastic materials with couple-stresses, Arch. Ration. Mech. Anal. 11 (1962) 385–414 [CrossRef] [Google Scholar]
  7. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal. 11 (1962) 415–448 [Google Scholar]
  8. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Sol. Struct. 39 (2002) 2731–2743 [CrossRef] [Google Scholar]
  9. S.K. Park, X.L. Gao, Bernoulli-Euler beam model based on a modified couple stress theory, J. Micromech. Microeng. 16 (2006) 2355–2359 [CrossRef] [Google Scholar]
  10. S. Kong, S. Zhou, Z. Nie, K. Wang, The size-dependent natural frequency of Bernoulli-Euler micro-beams, Int. J. Eng. Sci. 46 (2008) 427–437 [CrossRef] [Google Scholar]
  11. M. Simsek, T. Kocatürk, S.D. Akbas, Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory, Compos. Struct. 95 (2013) 740–747 [CrossRef] [Google Scholar]
  12. A. Nateghi, M. Salamat-talab, J. Rezapour, B. Daneshian, Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory, Appl. Math. Model. 36 (2012) 4971–4987 [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Akgoz, O. Civalek, Free vibration analysis axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory, Compos. Struct. 98 (2013) 314–322 [CrossRef] [Google Scholar]
  14. C.M.C. Roque, D.S. Fidalgo, A.J.M. Ferreira, J.N. Reddy, A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Compos. Struct. 96 (2013) 532–537 [CrossRef] [Google Scholar]
  15. L.L. Ke, Y. Wang, J. Yang, S. Kitipornchai, Nonlinear free vibration of size-dependent functionally graded microbeams, Int. J. Eng. Sci. 50 (2012) 256−267 [CrossRef] [Google Scholar]
  16. B. Akgoz, O. Civalek, Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory, Mater. Design 42 (2012) 164−171 [CrossRef] [Google Scholar]
  17. B. Akgoz, O. Civalek, Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory, Meccanica 48 (2013) 863−873 [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Asghari, Geometrically nonlinear micro-plate formulation based on the modified couple stress theory, Int. J. Eng. Sci. 51 (2012) 292–309 [CrossRef] [Google Scholar]
  19. P. Lu, L.H. He, H.P. Lee, C. Lu, Thin plate theory including surface effects, Int. J. Solid. Struct. 43 (2006) 4631–4647 [Google Scholar]
  20. C.W. Lim, L.H. He, Size-dependent nonlinear response of thin elastic films with nano-scale thickness, Int. J. Mech. Sci. 46 (2004) 1715−1726 [CrossRef] [Google Scholar]
  21. E. Jomehzadeh, H.R. Noori, A.R. Saidi, The size-dependent vibration analysis of micro-plates based on a modified couple stress theory, Phys. E 43 (2011) 877–883 [CrossRef] [Google Scholar]
  22. J.N. Reddy, J. Kim, A nonlinear modified couple stress-based third-order theory of functionally graded plates, Compos. Struct. 94 (2012) 1128–1143 [CrossRef] [Google Scholar]
  23. H.T. Thai, S.E. Kim, A size-dependent functionally graded Reddy plate model based on a modified couple stress theory, Composites B: Eng. 45 (2013) 1636–1645 [CrossRef] [Google Scholar]
  24. H.T. Thai, D.H. Choi, Size-dependent functionally graded Kirchhoff and Mindlin plate model based on a modified couple stress theory, Compos. Struct. 95 (2013) 142–153 [CrossRef] [Google Scholar]
  25. O. Civalek, B. Akgoz, Free vibration analysis of microtubules as cytoskeleton components: Nonlocal Euler-Bernoulli beam modeling, Scientica Iranica, Trans. B-Mech. Eng. 17 (2010) 367−375 [Google Scholar]
  26. Sc Pradhan, Buckling analysis and small scale effect of biaxially compressed graphene sheets using non-local elasticity theory, Sadhana 37 (2012) 461–480 [CrossRef] [Google Scholar]
  27. B. Akgoz, O. Civalek, Analysis of Micro-Sized Beams for VariousBoundary Conditions Based on the Strain Gradient Elasticity Theory, Arch. Appl. Mech. 82 (2012) 423–443 [CrossRef] [Google Scholar]
  28. G.R. Kirchhoff, Uber das gleichgewichi und die bewegung einer elastishem scheibe. JFuer die Reine und Angew. Math. 40 (1850) 51–88 [CrossRef] [Google Scholar]
  29. T.H. Von Karman, Encyklop die der Mathematischen, edition IV, Wissenschaften, 1910 [Google Scholar]
  30. D.O. Brush, B.O. Almorth, Buckling of bars, plates and shells, McGraw-Hill Book Company, 1980 [Google Scholar]
  31. L.H. Yu, C.Y. Wang, Buckling of rectangular plates on an elastic foundation using the Levy method, AIAA 12 (2008) 3163−3166 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.