Open Access
Mechanics & Industry
Volume 15, Number 6, 2014
Page(s) 497 - 507
Published online 26 September 2014
  1. G. Byrne, D. Dornfeld, I. Inasaki, G. Ketteler, W. König, R. Teti, Tool Condition Monitoring (TCM) – The Status of Research and Industrial Application, CIRP Annals: Manuf. Technol. 44 (1995) 541–567 [Google Scholar]
  2. S.H. Yeo, L.p. Khoo, S.S. Neo, Tool condition monitoring using reflectance of chip surface and neural network, J. Intelligent Manuf. 11 (2000) 507–514 [CrossRef] [Google Scholar]
  3. S. Kurada, C. Bradeley, A review of machine vision sensors for tool condition monitoring, Comput. Ind. 34 (1997) 55–72 [CrossRef] [Google Scholar]
  4. A.G. Rehorn, J. Jiang, P.E. Orban, State-of-the-art methods and results in tool condition monitoring: a review, Int. J. Adv. Manuf. Technol. 26 (2005) 693–710 [CrossRef] [Google Scholar]
  5. R.L. Kegg, On-line machine and process diagnostics, CIRP Annals: Manuf. Technol. 33 (1984) 469–473 [Google Scholar]
  6. S.N. Huang, K.K. Tan, Y.S. Wong, C.W. de Silva, H.L. Goh, W.W. Tan, Tool wear detection and fault diagnosis based on cutting force monitoring, Int. J. Mach. Tools Manuf. 47 (2007) 444–451 [Google Scholar]
  7. E. Kuljanic, M. SortinoTWEM, a method based on cutting forces–monitoring tool wear in face milling, Int. J. Mach. Tools Manuf. 45 (2005) 29–34 [CrossRef] [Google Scholar]
  8. F.J. Alonso, D.R. Salgado, Analysis of the structure of vibration signals for tool wear detection, Mech. Syst. Signal Process. 22 (2008) 735–748 [Google Scholar]
  9. S. Orhan, A. Osman, N. Camuscu, E. Aslan, Tool wear evaluation by vibration analysis during milling of AISI D3 cold work tool steel with 35 HRC hardness, NDTE&E Int. 40 (2007) 11–126 [Google Scholar]
  10. D.E. Dimla, Sensor signals for tool-wear monitoring in metal cutting operations–a review of methods, Int. J. Mach. Tools Manuf. 40 (2000) 1073–1098 [Google Scholar]
  11. J. Lin, Inverse estimation of the tool-work interface temperature in end milling, Int. J. Mach. Tools Manuf. 35 (1995) 751–760 [CrossRef] [Google Scholar]
  12. Srinivasa Pai P., Ramakrishna Rao P.K., Acoustic emission analysis for tool wear monitoring in face milling, Int. J. Prod. Res. 40 (2002) 1081–1093 [CrossRef] [Google Scholar]
  13. W.A. Gardner, Stationarizable Random Processes, IEEE Trans. Inf. Theory 24 (1978) 8–22 [CrossRef] [Google Scholar]
  14. W.A. Gardner, Statistical Spectral analysis: a non probabilistic theory, Prentice, Hall Inc, 1988 [Google Scholar]
  15. C. Capdessus, M. Sidahmed, J.L. Lacoume, Cyclostationary processes, application in gear faults early diagnosis, Mech. Syst. Signal Process. 14 (2000) 371–38 [Google Scholar]
  16. J. Antoni, F. Bonnardot, A. Raad, M. Elbadaoui, Cyclostationnary modelling of rotating machine vibration signals, Mech. Syst. Signal Process. 18 (2004) 1285–1314 [Google Scholar]
  17. J. Antoni, Apports de l’échantillonnage angulaire et de la cyclostationnarité au diagnostic par analyse vibratoire des moteurs thermiques, Thèse de l’Institut national polytechnique de Grenoble, 2000 [Google Scholar]
  18. J. Antoni, Cyclic spectral analysis in practice, Mech. Syst. Signal Process. 21 (2007) 597–630 [CrossRef] [Google Scholar]
  19. M.A. Elbestawi, T.A. Papazariou, R.X. Du, In process monitoring of tool wear in milling using cutting force signature, Int. J. Mach. Tools Manuf. 31 (1991) 55–73 [CrossRef] [Google Scholar]
  20. F. Bonnardot, Comparaison entre les analyses angulaire et temporelle des signaux vibratoires de machines tournantes. Etude du concept de cyclostationnarité floue, Thèse de l’Institut national polytechnique de Grenoble, 2004 [Google Scholar]
  21. R.B. Randall, J. Antoni, The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals, Mech. Syst. Signal Process. 15 (2001) 945–962 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.