Open Access
Issue
Mechanics & Industry
Volume 16, Number 1, 2015
Article Number 110
Number of page(s) 5
DOI https://doi.org/10.1051/meca/2014069
Published online 20 October 2014
  1. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58 [NASA ADS] [CrossRef] [Google Scholar]
  2. Y. Nakayama, S. Akita, Nanoengineering of carbon nanotubes for nanotools, New J. Phys. 5 (2003) 128 [CrossRef] [Google Scholar]
  3. W. Qiu, Y.L. Kang, Z. Lei, Q.H. Qin, Q. Li, A new theoretical model of a carbon nanotube strain sensor, Chin. Phys. Lett. 26 (2009) 080701 [CrossRef] [Google Scholar]
  4. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T.A. Arias, P.L. McEuen, A tunable carbon nanotube electromechanical oscillator, Nature 431 (2004) 284–287 [CrossRef] [PubMed] [Google Scholar]
  5. Z. Qin, Q.H. Qin, X.Q. Feng, Mechanical property of carbon nanotubes with intramolecular junctions: Molecular dynamics simulations, Phys. Lett. A 372 (2008) 6661–6666 [CrossRef] [Google Scholar]
  6. W. Qiu, Y.L. Kang, Z.K. Lei, Q.H. Qin, Q. Li, Q. Wang, Experimental study of the Raman strain rosette based on the carbon nanotube strain sensor, J. Raman Spectrosc. 41 (2010) 1216–1220 [CrossRef] [Google Scholar]
  7. J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289 (2000) 602–604 [CrossRef] [PubMed] [Google Scholar]
  8. Q.S. Zheng, Q. Jiang, Multiwalled carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett. 88 (2002) 045503 [CrossRef] [PubMed] [Google Scholar]
  9. K. Cai, H. Yin, Q.H. Qin, Y. Li, Self-excited Oscillation of Rotating Double-walled Carbon Nanotubes, Nano Lett. 14 (2014) 2558–2562 [CrossRef] [PubMed] [Google Scholar]
  10. W.L. Guo, Y.F. Guo, H.J. Gao, Q.S. Zheng, W.Y. Zhong, Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes, Phys. Rev. Lett. 91 (2003) 125501 [CrossRef] [PubMed] [Google Scholar]
  11. S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantas, D.S. Galvao, Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett. 90 (2003) 055504 [CrossRef] [PubMed] [Google Scholar]
  12. Y. Zhao, C.C. Ma, G.H. Chen, Q. Jiang, Energy dissipation mechanisms in carbon nanotube oscillators, Phys. Rev. Lett. 91 (2003) 175504 [CrossRef] [PubMed] [Google Scholar]
  13. J.L. Rivera, C. McCabe, P.T. Cummings, Oscillatory behavior of double-walled nanotubes under extension: A simple nanoscale damped spring, Nano Lett. 3 (2003) 1001–1005 [CrossRef] [Google Scholar]
  14. J.L. Rivera, C. McCabe, P.T. Cummings, The oscillatory damped behaviour of incommensurate double-walled carbon nanotubes, Nanotechnology 16 (2005) 186–198 [CrossRef] [PubMed] [Google Scholar]
  15. J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwall carbon nanotube, Compos. Sci. Technol. 63 (2003) 1533–1542 [CrossRef] [Google Scholar]
  16. C.Y. Li, T.W. Chou, Vibrational behaviors of multi- walled-carbon-nanotube-based nanomechanical resona- tors, Appl. Phys. Lett. 84 (2004) 121–123 [CrossRef] [Google Scholar]
  17. R. Li, G.A. Kardomateas, Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model, J. Appl. Mech. Trans. ASME 74 (2007) 1087–1094 [CrossRef] [Google Scholar]
  18. D. Garcia-Sanchez, A.S. Paulo, M.J. Esplandiu, F. Perez-Murano, L. Forro, A. Aguasca, A. Bachtold, Mechanical detection of carbon nanotube resonator vibrations, Phys. Rev. Lett. 99 (2007) 085501 [CrossRef] [PubMed] [Google Scholar]
  19. K. Liu, X. Hong, M. Wu, F. Xiao, W. Wang, X. Bai, J.W. Ager, S. Aloni, A. Zettl, E. Wang, F. Wang, Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes, Nature Commun. 4 (2013) 1375 [CrossRef] [Google Scholar]
  20. B.J. Cox, N. Thamwattana, J.M. Hill, Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory behaviour, 2006, Vol. 463, p. 477, Proc. Roy. Soc. a-Math. Phys. Eng. Sci. 463 (2007) 3395–3395 [Google Scholar]
  21. J.W. Kang, K.-S. Kim, H.J. Hwang, O.K. Kwon, Molecular dynamics study of effects of intertube gap on frequency-controlled carbon-nanotube oscillators, Phys. Lett. A 374 (2010) 3658–3665 [CrossRef] [Google Scholar]
  22. A. Neild, T.W. Ng, Q. Zheng, Controlled driven oscillations of double-walled carbon nanotubes, Europhys. Lett. 87 (2009) [Google Scholar]
  23. Z. Xia, W.A. Curtin, Pullout forces and friction in multiwall carbon nanotubes, Phys. Rev. B 69 (2004) [Google Scholar]
  24. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472–6486 [CrossRef] [Google Scholar]
  25. LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov/, 2013 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.