Open Access
Issue
Mechanics & Industry
Volume 16, Number 3, 2015
Article Number 309
Number of page(s) 7
DOI https://doi.org/10.1051/meca/2015004
Published online 21 April 2015
  1. Q. Zhang, M. Arentoft, S. Bruschi, L. Dubar, E. Felder, Measurement of friction in a cold extrusion operation: Study by numerical simulation of four friction tests, Int. J. Mater. Form. Suppl 1 (2008) 1267–1270 [CrossRef] [Google Scholar]
  2. S.B. Petersen, P.A.F. Martins, N. Bay, Friction in bulk metal forming: a general friction model vs. the law of constant friction, J. Mater. Process. Technol. 66 (1997) 186–194 [CrossRef] [Google Scholar]
  3. M.S. Joun, H.G. Moon, I.S. Choi, M.C. Lee, B.Y. Jun, Effects of the friction law on metal forming processes, Tribol. Int. 42 (2009) 311–319 [CrossRef] [Google Scholar]
  4. S. Hasan, R. Jahan, On the measurement of friction coefficient utilizing the ring compression test, Tribol. Int. 32 (1999) 327–335 [CrossRef] [Google Scholar]
  5. A.T. Male, M.G. Cockcroft, A method for the determination of the coefficient of friction of metals under condition of bulk plastic deformation, J. Inst. Metals 93 (1964) 38−46 [Google Scholar]
  6. R. Ebrahimi, A. Najafizadeh, A new method for evaluation of friction in bulk metal forming, J. Mater. Process. Technol. 152 (2004) 136–143 [CrossRef] [Google Scholar]
  7. X. Tan, Comparisons of friction models in bulk metal forming, Tribol. Int. 35 (2002) 385–393 [CrossRef] [Google Scholar]
  8. E. Vidal-Sallé, S. Boutabba, Y. Cui, J.C. Boyer, An improved “plastic wave” friction model for rough contact in axisymmetric modelling of bulk forming processes, Int. J. Mater. Form 1 (2008) 1263–1266 [CrossRef] [Google Scholar]
  9. M. Schikorra, L. Donati, L. Tomesani, A.E. Tekkaya, Microstructure analyses of aluminum extrusion: grain size distribution in AA6060, AA6082 and AA7075 alloys, J. Mech. Sci. Technol. 21 (2007) 1445–1451 [CrossRef] [Google Scholar]
  10. R. Develay, Traitements thermiques des alliages d’aluminium, Techniques de l’ingénieur, M 1290 (2000) 13 [Google Scholar]
  11. A.M. Habraken, C. Bouffioux, M. Carton, J.L. Beckers, Study of a 2024 aluminium rod produced by rotary forging, J. Mater. Process. Technol. 184 (2007) 19–26 [CrossRef] [Google Scholar]
  12. E. Felder, Procédés de mise en forme – Introduction, Techniques de l’Ingénieur, M 3000 (2000) 4 [Google Scholar]
  13. D. Karagiozova, R. Mines, Impact of aircraft rubber tyre fragments on aluminium alloy plates: II-numerical simulation using LS-DYNA, Int. J. Impact Eng. 34 (2007) 647–667 [CrossRef] [Google Scholar]
  14. D. Varas, R. Zaera, J. López-Puente, Numerical modelling of the hydrodynamic ram phenomenon, Int. J. Impact Eng. 36 (2009) 363–374 [CrossRef] [Google Scholar]
  15. A. Rusinek, R. Zaera, P. Forquin, J.R. Klepaczko, Effect of plastic deformation and boundary conditions combined with elastic wave propagation on the collapse site of a crash box, Thin-Walled Structures 46 (2008) 1143–1163 [CrossRef] [Google Scholar]
  16. Z. Kazanci, K. Bathe, Crushing and crashing of tubes with implicit time integration, Int. J. Impact Eng. 42 (2012) 80–88 [CrossRef] [Google Scholar]
  17. Z. Zong, Y. Zhao, H. Li, A numerical study of whole ship structural damage resulting from close-in underwater explosion shock, Marine Structures 31 (2013) 24–43 [CrossRef] [Google Scholar]
  18. S. Ehlers, The influence of the material relation on the accuracy of collision simulations, Marine Structures 23 (2010) 462–474 [CrossRef] [Google Scholar]
  19. W. Hui, L. Ying-bing, P. Friedman, C. Ming-he, G. Lin, Warm forming behavior of high strength aluminum alloy AA7075, Trans. Nonferrous Met. Soc. China 22 (2012) 1–7 [CrossRef] [Google Scholar]
  20. H. Marouani, M. Rachik, E. Hug, Experimental investigations and FEM simulations of parameters influencing the Fe-(wt.3%) Si shearing process, Mech. Industry 13 (2012) 271–278 [CrossRef] [EDP Sciences] [Google Scholar]
  21. T. Skare, F. Krantz, Wear and frictional behaviour of high strength steel in stamping monitored by acoustic emission technique, Wear 255 (2003) 1471–1479 [CrossRef] [Google Scholar]
  22. K. Louaisil, M. Dubar, R. Deltombe, A. Dubois, L. Dubar, Analysis of interface temperature, forward slip and lubricant influence on friction and wear in cold rolling, Wear 266 (2009) 119–128 [CrossRef] [Google Scholar]
  23. D.K. Leu, Modeling of surface roughness effect on dry contact friction in metal forming, Int. J. Adv. Manuf. Technol. 57 (2011) 575–584 [CrossRef] [Google Scholar]
  24. S. Sah, R.X. Gao, An experimental study of contact pressure distribution in panel stamping operations, Int. J. Adv. Manuf. Technol. 55 (2011) 121–132 [CrossRef] [Google Scholar]
  25. J.M. Challen, P.L.B. Oxley, An expiation of the different regimes of friction and wear using asperity deformation models, Wear 53 (1979) 229–243 [CrossRef] [Google Scholar]
  26. E. Vidal-Salle, A. Dubois, M. Dubar, L. Dubar, J.C. Boyer, Experimental identification and validation of the plastic wave approach in hot forging of steels, Wear 286–287 (2012) 35–44 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.