Open Access
Issue
Mechanics & Industry
Volume 16, Number 6, 2015
Article Number 604
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2015032
Published online 20 August 2015
  1. A. Seireg, A survey of optimisation of mechanical design, J. Eng. Ind. T ASME 94 (1972) 495–499 [CrossRef] [Google Scholar]
  2. A.A. Seireg, J. Rodriguez, Optimizing the shape of mechanical elements and structures, CRC Press, Cleveland, OH, 1997 [Google Scholar]
  3. J. Ahluwalia, S.K. Gupta, V.P. Agrawal, Computer-aided optimum selection of roller bearings, Comput. Aid. Des. 25 (1993) 493–499 [CrossRef] [Google Scholar]
  4. H. Aramaki, Rolling bearing analysis program package BRAIN, NSK Technical Journal Motion Control 3 (1997) 15–24 [Google Scholar]
  5. D.-H. Choi, K.-C. Yoon, A Design Method of an automotive wheel-bearing unit with discrete design variables using genetic Algorithms, J. Tribol. T ASME 123 (2001) 181–187 [CrossRef] [Google Scholar]
  6. K. Kalita, R. Tiwari, S.K. Kakoty, Multi-objective optimisation in rolling element bearing system design, In: Proceedings of the International Conference on Optimisation (SIGOPT 2002), Lambrecht, Germany, 2002 [Google Scholar]
  7. I. Chakraborty, V. Kumar, S.B. Nair, R. Tiwari, Rolling element bearing design through genetic algorithms, Eng. Optimiz. 35 (2003) 649–659 [CrossRef] [Google Scholar]
  8. B.R. Rao, R. Tiwari, Optimum design of rolling element bearings using genetic algorithms, Mech. Mach. Theory 42 (2007) 233–250 [CrossRef] [Google Scholar]
  9. S. Gupta, R. Tiwari, S.B. Nair, Multi-objective design optimisation of rolling bearings using genetic Algorithms, Mech. Mach. Theory 42 (2007) 1418–1443 [CrossRef] [Google Scholar]
  10. V. Savsani, R.V. Rao, D.P. Vakharia, Multi-objective design optimization of ball bearings using a modified particle swarm optimization technique, Int. J. Des. Eng. 1 (2008) 412–433 [Google Scholar]
  11. Y. Wei, R. Chengzu, Optimal design of high speed angular contact ball bearing using a multiobjective evolution algorithm, In: Proceedings of the IEEE Int. Conf. on Computing, Control and Industrial Engineering (CCIE 2010), Wuhan, China, 2010 [Google Scholar]
  12. K.S. Kumar, R. Tiwari, R.S. Reddy, Development of an optimum design methodology of cylindrical roller bearings using genetic algorithms, Int. J. Comput. Meth. Eng. Sci. Mech. 9 (2008) 321–341 [CrossRef] [Google Scholar]
  13. K.S. Kumar, R. Tiwari, V.V.N. Prasad, An optimum design of crowned cylindrical roller bearings using genetic Algorithms, J. Mech. Des. T ASME 131 (2009) 051011-1– 051011-14 [CrossRef] [Google Scholar]
  14. R.J. Parker, S.I. Pinel, H.R. Signer, Performance of computer-optimized tapered-roller bearings to 2.4 Million DN, J. Tribol. T ASME 103 (1981) 13– 20 [CrossRef] [Google Scholar]
  15. N. Chaturbhuj, S.B. Nair, R. Tiwari, Design optimization for tapered roller bearings using genetic algorithms, In: Proceedings of the International Conference on Artificial Intelligence (IC-AI 03 2003), CSREA Press, Las Vegas, Nevada, 2003, Vol. 1, pp. 421–427, [Google Scholar]
  16. B. Walker, High speed tapered roller bearing optimization, MS Thesis, Rensselaer Polytechnic Institute, Hartford, Connecticut, 2008 [Google Scholar]
  17. Z. Wang, L. Meng, H. Wensi, E. Zhang, Optimal design of parameters for four column tapered roller bearing, Appl. Mech. Mater. 63-64 (2011) 201– 204 [CrossRef] [Google Scholar]
  18. R Tiwari, K.K. Sunil, R.S. Reddy, An optimal design methodology of tapered roller bearings using genetic Algorithms, Int. J. Comp. Meth. Eng. Sci. Mech. 13 (2012) 108–127 [CrossRef] [Google Scholar]
  19. R. Tiwari, R. Chandran, Thermal based optimum design of tapered roller bearing through evolutionary Algorithm, In: Proceedings of the ASME 2013 Gas Turbine India Conference, Bangalore, Karnataka, India, 2013 (paper No. GTINDIA2013-3792). [Google Scholar]
  20. E. Dragoni, Optimal design of radial cylindrical roller bearings for maximum load-carrying capacity, Proc. IMechE, Part C: J Mech. Eng. Sci. 227 (2013) 2393–2401 [CrossRef] [Google Scholar]
  21. ISO 76, Rolling bearings – Static load ratings, 2006 [Google Scholar]
  22. H. Wiesner, Rolling bearings TC4 meets GPS TC213, Evolution 19 (2012) 24–28 [Google Scholar]
  23. ISO 492, Rolling bearings – Radial bearings – Tolerances, 2002 [Google Scholar]
  24. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985 [Google Scholar]
  25. T.A. Harris, Rolling Bearing Analysis, 4th edn. John Wiley & Sons, New York, 2000 [Google Scholar]
  26. NSK, Bearing internal load distribution and displacement, http://www.jp.nsk.com/app01/en/ctrg/index.cgi?gr=dn–&"pno=nsk_cat_e728g_5 (access date 2/11/2014) [Google Scholar]
  27. INA, BEARINX-online Shaft Calculation, http://www.ina.de/content.ina.de/en/products_services/calculating/Calculation_and_testing.jsp (access date 2/11/2014) [Google Scholar]
  28. G. Niemann, H. Winter, B.-R. Höhn, Maschinenelemente, Springer, Vol. I Berlin, Germany, 2005 [Google Scholar]
  29. ISO 355, Rolling bearings – Tapered roller bearings – Boundary dimensions and series designations, 2007 [Google Scholar]
  30. TIMKEN, Tapered Roller Bearing Catalogue, http://www.timken.com/en-us/products/Pages/Catalogs.aspx (access date 24/9/2014) [Google Scholar]
  31. INA, Tapered Roller Bearing Catalogue, http://www.ina.de/content.ina.de/de/products_services/rotativ_products/tapered_roller_bearings/tapered_roller_bearings.jsp (access date 24/9/2014) [Google Scholar]
  32. G. Niemann, Maschinenelemente, Springer, Berlin, Germany, 1981, Vol. I [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.