Open Access
Issue
Mechanics & Industry
Volume 16, Number 6, 2015
Article Number 608
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2015040
Published online 04 September 2015
  1. V.K. Stokes, Couple stresses in fluids, Phys. Fluids 9 (1966) 1709–1715 [CrossRef] [Google Scholar]
  2. T.T. Ariman, N.D. Sylvester, Microcontinuum fluid mechanics, A review Int. J. Eng. Sci. 11 (1973) 905–930 [CrossRef] [Google Scholar]
  3. T.T. Ariman, N.D. Sylvester, Application of micro continuum fluid mechanics, J. Eng. Sci. 12 (1974) 273–293 [CrossRef] [Google Scholar]
  4. R.S. Gupta, L.G. Sharma, Analysis of couple stress lubricant in hydrostatic thrust bearing, Wear 125 (1988) 257–269 [CrossRef] [Google Scholar]
  5. N.M. Bujurke, N.G. Naduvinamani, On the performance of narrow porous journal bearing lubricated with couple stress fluid, Acta Mech. 86 (1991) 179–191 [CrossRef] [Google Scholar]
  6. J.R. Lin, Static characteristics of rotor journal bearing system lubricated with couple stress fluids, Comput. Struct. 62 (1997) 175–184 [CrossRef] [Google Scholar]
  7. J.R. Lin, Squeeze film characteristics of long partial journal bearings lubricated with couple-stress fluids, Tribol. Int. 30 (1997) 53–58 [CrossRef] [Google Scholar]
  8. J.R. Lin, Effects of couple stresses on the lubrication of finite journal bearings, Wear 206 (1997) 171–178 [CrossRef] [Google Scholar]
  9. J.R. Lin, Squeeze film characteristics of finite journal bearings: couple-stress fluid model, Tribol. Int. 31 (1998) 201–207 [CrossRef] [Google Scholar]
  10. J.R. Lin, Static and dynamic characteristics of externally pressurized circular bearings lubricated with couple-stress fluids, Tribol. Int. 32 (1999) 207–216 [CrossRef] [Google Scholar]
  11. J.R. Lin, Linear stability analysis of a rotor-bearing system: couple-stress fluid model, Comput. Struct. 79 (2000) 801–809 [CrossRef] [Google Scholar]
  12. A.A. Elsharkawy, Guedouar, An inverse method for finite journal bearings lubricated with couple stress fluids, Tribol. Int. 34 (2001) 107–118 [CrossRef] [Google Scholar]
  13. N.B. Naduvinamani, P.S. Hiremath, G. Gurubasavaraja, Surface roughness effects in a short porous journal bearing with a couple stress fluid, Fluid Dyn. Res. 31 (2002) 333–354 [CrossRef] [Google Scholar]
  14. Hsiu-Lu Chiang, Cheng-Hsing Hsu, Jaw-Ren Lin, Lubrication performance of finite journal bearings considering effects of couple stresses and surface roughness, Tribol. Int. 37 (2004) 297–307 [CrossRef] [Google Scholar]
  15. Yan-Yan Ma, Wei-Hua Wang, Xian-Hua Cheng, A study of dynamically loaded journal bearings lubricated with non-Newtonian couple stress fluids, Tribol. Lett. 17 (2004) 69–74 [CrossRef] [Google Scholar]
  16. M. Lahmar, Elasto-hydrodynamic analysis of double-layered journal bearings lubricated by couple-stress fluids, J. Eng. Tribol. Proc. IMech E, Part J 219 (2005) 145–171 [CrossRef] [Google Scholar]
  17. N.B. Naduvinamani, A. Siddangouda, Effect of surface roughness on the hydrodynamic lubrication of porous step-slider bearings with couple stress fluids, Tribol. Int. 40 (2006) 780–793 [CrossRef] [Google Scholar]
  18. Cai-Wan Chang-Jiana, Chao-Kuang Chen, Bifurcation analysis of flexible rotor supported by couple-stress fluid film bearings with non-linear suspension systems, Tribol. Int. 41 (2008) 367–386 [CrossRef] [Google Scholar]
  19. H. Boucherit, M. Lahmar, B. Bou-Saïd, Misalignment effects on steady-state and dynamic behaviour of compliant journal bearings lubricated with couple stress fluids, J. Lubrication Science John Wiley Editor 20 (2008) 241–268 [CrossRef] [Google Scholar]
  20. H. Boucherit, M. Lahmar, B. Bou-Saïd, J. Tichy, Comparison of Non-Newtonian Constitutive Laws in Hydrodynamic Lubrication, Tribology Letters, James Lauer Memorial Issue, Guest Editor: Frank Talke 40 (2010) 49–57 [Google Scholar]
  21. H. Boucherit, M. Lahmar, Étude théorique et numérique des effets combinés du comportement non-newtonien et de la piezoviscosité du lubrifiant sur les performances statiques d’un palier compliant, Matériaux & Techniques 100 (2012) 87–100 [CrossRef] [EDP Sciences] [Google Scholar]
  22. V. Petrone, A. Senatore, V. D’Agostino, Effect of an Improved Yasutomi Pressure-Viscosity Relationship on the Elastohydrodynamic Line Contact Problem, ISRN Tribology, 2013, Article ID 149451, 2013 (2013) 149451 [Google Scholar]
  23. K.G. Binu, B.S. Shenoy, D.S. Rao, R. Pai, Static characteristics of a fluid film bearing with TiO2 based nanolubricant using the modified Krieger-Dougherty viscosity model and couple stress model, Tribol. Int. 75 (2014) 69–79 [CrossRef] [Google Scholar]
  24. H. Van Leeuwen, The determination of the pressure–viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 223 (2009) 1143–1163 [CrossRef] [Google Scholar]
  25. V. D’Agostino, V. Petrone, A. Senatore, Effects of the Lubricant Piezo-Viscous Properties on EHL Line and Point Contact Problems, Tribol. Lett. 49 (2013) 385–396 [CrossRef] [Google Scholar]
  26. D. Nicolas, Les paliers hydrodynamiques soumis à un torseur de forces quelconque, Thèse de Docteur Ingénieur, INSA, Lyon, 1972 [Google Scholar]
  27. C. Barus, Isotherms, isopiestics and isometrics relative to viscosity, Am. J. Sci. 45 (1893) 87–96 [CrossRef] [Google Scholar]
  28. D. Dowson, G.R. Higginson, Elasto-hydrodynamic lubrification, the fundamentals of roller and gear lubrication, Pergamon Press, Oxford, 1966 [Google Scholar]
  29. E. Hoglund, Influence of lubricant properties on elastohydrodynamic, lubrication, Wear 232 (1999) 178–184 [CrossRef] [Google Scholar]
  30. A. Kabouya, M. Lahmar, B. Bou-Saïd, Étude des paliers lisses mésalignés lubrifiés par des fluides à couple de contrainte, Mécanique & Industries 8 (2007) 577–595 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.