Open Access
Issue
Mechanics & Industry
Volume 17, Number 3, 2016
Article Number 308
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2015067
Published online 15 February 2016
  1. F. Tafinine, K. Mokrani, K. Hamasse, Diagnostic des Machines Asynchrones par l’Analyse Spectrale du Courant Statorique, Proceedings of National Conference Electrical Engineering, Tiaret, Algerie, 2004, pp. 256–260 [Google Scholar]
  2. E.C.C. Lau, H.W. Ngan, Detection of Motor Bearing Outer Raceway Defect by Wavelet Packet Transformed Motor Current Signature Analysis, IEEE Trans. Instrum. Meas. 59 (2010) 2683–2690 [CrossRef] [Google Scholar]
  3. E.L. Bonaldi, L.E.L. de Oliveira, L.E.B. da Silva, G.L. Torres, Removing the fundamental component in MCSA using the synchronous reference frame approach, in Proc. IEEE ISIE, 2003, pp. 913–918 [Google Scholar]
  4. M.E.H. Benbouzid, G.B. Kliman, What stator current processing based technique to use for induction motor rotor fault diagnosis? IEEE Trans. Energy Convers. 18 (2003) 238–244 [CrossRef] [Google Scholar]
  5. S. Nandi, H.A. Toliyat, X.D. Li, Condition monitoring and fault diagnosis of electric motors – A review, IEEE Trans. Energy Convers. 20 (2005) 719–728 [Google Scholar]
  6. R.R. Obaid, T.G. Habetler, J.R. Stack, Stator current analysis for bearing damage detection in induction motors, in Proc. SDEMPED, Atlanta, GA, 2003, pp. 182–187 [Google Scholar]
  7. R. Schoen, T. Habetler, F. Karman, R. Bartheld, Motor Bearing Damage Detection Using Stator Current Monitoring, IEEE Trans. Ind. Appl. 31 (1995) 1274–1279 [Google Scholar]
  8. L. Cohen, Time-frequency analysis, Prentice-Hall, Englewood Cliffs, NJ, 1995 [Google Scholar]
  9. W.J. Staszewski, K. Worden, G.R. Tomlinson, The frequency analysis in gearbox fault detection using the Wigner-Ville distribution and pattern recognition, Mech. Syst. Signal Process. 11 (1997) 673–692 [CrossRef] [Google Scholar]
  10. S. Prabhakar, A.R. Mohanty, A.S. Sekhar, Application of discrete wavelet transform for detection of ball bearing race fault, Tribol. Int. 35 (2002) 793–800 [CrossRef] [Google Scholar]
  11. J.-C. Cexus, Analyse des Signaux Non-Stationnaires par Transformation de Huang, Opérateur de Teager-Kaiser, et Transformation de Huang-Teager (THT), Thèse, Université de Rennes 1, 2005 [Google Scholar]
  12. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear end Non-Stationary Time Series Analysis, Proc. R. Soc. Lond. Ser. (1998) 903–995 [Google Scholar]
  13. Cheng Junsheng, Yu Dejie, Yang Yu, A fault diagnosis approach for roller bearings based on EMD method and AR model, Mech. Syst. Signal Process. 20 (2006) 350–362 [CrossRef] [Google Scholar]
  14. N.E. Huang, Z. Shen, S.R. Long, A new view of nonlinear water waves: the Hilbert spectrum, Ann. Rev. Fluid Mech. 31 (1999) 417–457 [Google Scholar]
  15. Ding Hong, Wu Ya, Yang Shuzi, Fault diagnosis by time series analysis, Applied Time Series Analysis, World Scientific Publishing Co, Singapore, 1989 [Google Scholar]
  16. Wu Ya, Yang Shuzi, Application of several time series models in prediction, Applied Time Series Analysis, World Scientific Publishing Co, Singapore, 1989 [Google Scholar]
  17. H.A. Estilaf, S.M. J Rastegar Fatemi, Bearing Fault Diagnosis of Electrical Machine base on Vibration Signal Using Multi-Class Support Vector Machine. Indian J. Sci. Res. (2014) 46–53 [Google Scholar]
  18. Q. He, H.J. Zhang, H.L. Zhou, Evaluation of Stress Using Ultrasonic Technique Based on Hilbert-Huang Transform, International Symposium Instrum. Sci. Technol. 48 (2006) 106–110 [Google Scholar]
  19. V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995 [Google Scholar]
  20. J. Callut, Implémentation Efficace des Supports Vector Machines pour la Classification, Mémoire présenté en vue de l’obtention du grade de Maître en Informatique, Université Libre de Bruxelles, 2003 [Google Scholar]
  21. A. Soualhi, K. Medjaher, N. Zerhouni, Bearing Health monitoring based on Hilbert-Huang Transform, Support Vector Machine and Regression, IEEE Trans. Instrum. Meas., Institute of Electrical and Electronics Engineers (2014) 1–11 [Google Scholar]
  22. IEEE Motor reliability working group, Report on Large Motor Reliability Survey of Industrial and Commercial Installations, IEEE Trans. Ind. Appl. IA-21 (1985) 853–872 [Google Scholar]
  23. H. Razik, Le Contenu Spectral du Courant Absorbé par la Machine Asynchrone en cas de Défaillance, un Etat de L’art, EI (2002) 48–52. [Google Scholar]
  24. B. Raison, Détection et Localisation de Défaillances sur un Entraînement Electrique, Thèse, INPG Grenoble, 2000 [Google Scholar]
  25. Y. Zhang, Hilbert-Huang transform and marginal spectrum for detection of bearing localized defects, IEEE Proceeding of the 6th World Congress on Intelligent Control and Automation, 2006, pp. 5457–5461 [Google Scholar]
  26. O. Butscher, Diagnostic de la Machine Asynchrone, Mémoire de D.E.A en Génie Electrique, (INPG) Grenoble, Septembre 2001 [Google Scholar]
  27. F. Tafinine, K. Mokrani, J. Antoni, A. Kabla, Z. Asradj, Introduction des SVM en MCSA, 4th International Conférence: Science Electronic Technologies of Information and Telecommunications, Tunisia, March 25-29, 2007 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.