Open Access
Issue
Mechanics & Industry
Volume 17, Number 3, 2016
Article Number 309
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2015076
Published online 15 February 2016
  1. B. Fnides, M.A. Yallese, H. Aouici, Hard turning of hot work steel AISI H11: Evaluation of cutting pressures, resulting force and temperature, Mechanika 4 (2008) 59–63 [Google Scholar]
  2. H. Aouici, M. A Yallese, B Fnides, K. Chaoui, T Mabrouki, Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool, J. Mech. Sci. Technol. 25 (2011) 2843–2851 [CrossRef] [Google Scholar]
  3. J.M. Zou, M. Anderson, J.E. Stahl, Identification of cutting errors in precision hard turning process, J. Mater. Process. Technol. 15–154 (2004) 746–750 [Google Scholar]
  4. J. Rech, A. Moisan, Surface Integrity in finish hard turning of case hardened steels, J. Mach. Tools Manuf. 43 (2003) 54–550 [CrossRef] [Google Scholar]
  5. I. Meddour, M.A. Yallese, R. Khattabi, M. Elbah, L. Boulanoua, Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization, Int. J. Adv. Manufact. Technol. 77 (2014) 1387–1399 [CrossRef] [Google Scholar]
  6. J.S. Dureja, V.K. Gupta, M. Dogra, Design optimization of cutting conditions and analysis of their effect on tool wear and surface roughness during hard turning of AISI-H11 steel with a coated mixed ceramic tool, J. Eng. Manuf. B 223 (2009) 144–1453 [Google Scholar]
  7. P. Thangavel, V. Selladurai, R. Shanmugam, Application of response surface methodology for predicting flank wear in turning operation, Proc. IMechE 220 (2006) 997–1003 [CrossRef] [Google Scholar]
  8. H. Öktem, T. Erzurumlu, H. Kurtaran, Application of response surface methodology in the optimization of cutting conditions for surface roughness, J. Mater. Process. Technol. 170 (2005) 11–16 [CrossRef] [Google Scholar]
  9. A.A. Premnath, T. Alwarsamy, T. Abhinav, C.A. Krishnakant, Surface roughness prediction by response surface methodology in milling of hybrid aluminium composites, Proc. Eng. 38 (2012) 745–752 [CrossRef] [Google Scholar]
  10. A. Ebadnejad, G.R. Karimi, H. Dehghani, Application of response surface methodology for modeling of ball mills in copper sulphide ore grinding, Powder Technol. 245 (2013) 292–296 [CrossRef] [Google Scholar]
  11. M. Elbah, M.A. Yallese, H. Aouici, T. Mabrouki, J-F Rigal, Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel, Measurement 46 (2013) 304–3056 [CrossRef] [Google Scholar]
  12. T. Rajmohan, K. Palanikumar, Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites, Measurement 46 (2013) 1470–148 [CrossRef] [Google Scholar]
  13. P.K. Kankar, S.P. Harsha, P. Kumar, Satish C. Sharma, Fault diagnosis of a rotor bearing system using response surface method, Eur. J. Mech. A/Solids 28 (2009) 841–857 [CrossRef] [Google Scholar]
  14. Z. Hessainia, A. Belbah, M.A. Yallese, T. Mabrouki, J-F. Rigal, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations, Measurement 6 (2013) 1671–168 [CrossRef] [Google Scholar]
  15. M.W. Azizi, S. Belhadi, M.A. Yallese, T. Mabrouki, J.-F. Rigal,Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel, J. Mech. Sci. Technol. 26 (2012) 410–4114 [CrossRef] [Google Scholar]
  16. E.D. Kirby, Z. Zhang, J.C. Chen, Development of an accelerometer based surface roughness prediction system in turning operation using multiple regression techniques, J. Ind. Technol. 4 (2004) 1–8 [Google Scholar]
  17. A. Doniavi, M. Eskanderzade, M. Tahmsebian, Empirical modeling of surface roughness in turning process of 1060 steel using factorial design methodology, J. Appl. Sci. 7 (2007) 2509–2513 [CrossRef] [Google Scholar]
  18. J.P. Davim, L. Figueira, Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques, Mater. Des. 28 (2007) 118–1191 [Google Scholar]
  19. X. Feng, X. Wang, Development of empirical models for surface roughness prediction in finish turning, J. Adv. Manuf. Technol. 20 (2002) 348–356 [CrossRef] [Google Scholar]
  20. I.A. Choudhury, M.A. El-Baradie, Surface roughness prediction in the turning of high-strength steel by factorial design of experiments, J. Mater. Process. Technol. 67 (1997) 55–61 [CrossRef] [Google Scholar]
  21. J.D. Thiele, S.N. Melkote, Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel, J. Mater. Process. Technol. 94 (1999) 216–226 [CrossRef] [Google Scholar]
  22. A.I. Khuri, S. Mukhopadhyay, Response surface methodology, WIREs Comput. Stat. 2 (2010) 12–149 [CrossRef] [Google Scholar]
  23. D.C. Montgomery, Design and Analysis of Experiments, 6th edition, John Wiley & Sons, 2004 [Google Scholar]
  24. R.H. Myers, D.C. Montgomery, in: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edition, John Wiley & Sons, New York, 2002 [Google Scholar]
  25. H. Bouchelaghem, M.A. Yallese, A. Amirat, T. Mabrouki, J-F. Rigal, Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3), Mach. Sci. Technol. 14 (2010) 471–501 [CrossRef] [Google Scholar]
  26. H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.-F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization, Measurement 45 (2012) 34–353 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.