Open Access
Mechanics & Industry
Volume 17, Number 3, 2016
Article Number 304
Number of page(s) 11
Published online 08 February 2016
  1. D. Izidoro, M.R. Sierakowski, N. Waszczynskyj, C.W.I. Haminiuk, A.D.P. Scheer, Sensory Evaluation and Rheological Behavior of Commercial Mayonnaise, Int. J. Food Eng. 3-1 (2007) 5 [Google Scholar]
  2. G. Mullineux, M.J.H. Simmons, Influence of rheological model on the processing of yoghurt, J. Food Eng. 84 (2008) 250–257 [CrossRef] [Google Scholar]
  3. J.M. Piau, Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges Meso- and macroscopic properties, constitutive equations and scaling laws, J. Non-Newtonian Fluid Mech. 144 (2007) 1–29 [CrossRef] [Google Scholar]
  4. C. Chang, Q.D. Nguyen, H.P. Ronningsen, Isothermal start-up of pipeline transporting waxy crude oil, J. Non-Newtonian Fluid Mech. 87 (1999) 127–154 [CrossRef] [Google Scholar]
  5. V.H. Nguyen, S. Remond, J.L. Gallias, Influence of cement grouts composition on the rheological behavior, Cem. Concr. Res. 41 (2011) 292–300 [CrossRef] [Google Scholar]
  6. P.R. Johnston, Axial conduction and the Graetz problem for a Bingham plastic in laminar tube flow, Int. J. Heat Mass Trans. 34 (1991) 1209–1217 [CrossRef] [Google Scholar]
  7. G. Duvaut, J.L. Lions, Transfert de chaleur dans un fluide de Bingham dont la viscosité dépend de la temperature, J. Funct. Anal. 11 (1972) 93–110 [CrossRef] [Google Scholar]
  8. M.A.M. Al Khatib, S.D.R. Wilson, The development of Poiseuille flow of a yield-stress fluid, J. Non-Newtonian Fluid Mech. 100 (2001) 1–8 [CrossRef] [Google Scholar]
  9. E. Mitsoulis, On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects, Chem. Eng. Sci. 59 (2004) 789–800 [CrossRef] [Google Scholar]
  10. G. Vinay, A. Wachs, J.F. Agassant, Numerical simulation of non-isothermal viscoplastic waxy crude oil flows, J Non-Newtonian Fluid Mech. 128 (2005) 144–162 [Google Scholar]
  11. J.J. Shu, J.G. Zhou, Characteristics of a hydraulic jump in Bingham fluid, J. Hydraulic Res. 44-3 (2006) 421–426 [CrossRef] [Google Scholar]
  12. A. Wachs, Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods, J. Non-Newtonian Fluid Mech. 142 (2007) 183–198 [CrossRef] [Google Scholar]
  13. N.J. Balmforth, A.C. Rust, Weakly nonlinear viscoplastic convection, J. Non-Newtonian Fluid Mech. 158 (2009) 36–45 [CrossRef] [Google Scholar]
  14. E.J. Soares, M.F. Naccache, P.R. Souza Mendes, Heat transfer to viscoplastic materials flowing axially through concentric annuli, Int. J. Heat Fluid Flow 24 (2003) 762–773 [CrossRef] [Google Scholar]
  15. C. Nouar, Thermal convection for a thermo-dependent yield stress fluid in an axisymmetric horizontal duct, Int. J. Heat Mass Trans. 48 (2005) 5520–5535 [CrossRef] [Google Scholar]
  16. E. Mitsoulis, S.G. Hatzikiriakos, Rolling of bread dough: Experiments and simulations, Food Bioprod. Process. 87 (2009) 124–138 [CrossRef] [Google Scholar]
  17. G.C. Vradis, J. Dougher, S. Kumar, Entrance pipe flow and heat transfer for a Bingham plastic, Int. J. Heat Mass Trans. 36-3 (1993) 543-552. [Google Scholar]
  18. T. Min, H.G. Choi, J.Y. Yoo, H. Choi, Laminar convective heat transfer of a Bingham plastic in a circular pipe-II. Numerical approach-hydrodynamically developing flow and simultaneously developing flow, Int. J. Heat Mass Trans. 40 (1997) 3689–3701 [Google Scholar]
  19. R. Khatyr, D. Ouldhadda, A. Il Idrissi, Approche analytique de la convection forcée des fluides de Bingham dans un tube, C R Mecanique 330 (2002) 69–75 [Google Scholar]
  20. R. Khatyr, D. Ouldhadda, A. Il Idrissi, Viscous dissipation effects on the asymptotic behaviour of laminar forced convection for Bingham plastics in circular ducts, Int. J. Heat Mass Trans. 46 (2003) 589–598 [Google Scholar]
  21. E. Osalusi, J. Side, R. Harris, B. Johnston, On the effectiveness of viscous dissipation and Joule heating on steady MHD flow and heat transfer of a Bingham fluid over a porous rotating disk in the presence of Hall and ion-slip currents, Int. Commun. Heat Mass Trans. 34 (2007) 1030–1040 [CrossRef] [Google Scholar]
  22. A. Boualit, N. Zeraibi, S. Boualit, M. Amoura, Thermal development of the laminar flow of a Bingham fluid between two plane plates with viscous dissipation, Int. J. Thermal Sci. 50 (2011) 36–43 [CrossRef] [Google Scholar]
  23. E. Sayed-Ahmed, Laminar heat transfer for thermally developing flow of a Herschel-Bulkley fluid in a square duct, Int. Comm. Heat Mass Trans. 27-7 (2000) 1013–1024 [CrossRef] [Google Scholar]
  24. T.C. Papanastasiou, Flow of materials with yield, J. Rheology 31 (1987) 385–404 [CrossRef] [Google Scholar]
  25. E. Mitsoulis, Professor T.C. Papanastasiou’s contributions to rheology and computational fluid mechanics, Rheol Acta 35 (1996) 525–530 [CrossRef] [Google Scholar]
  26. B.D. De Besses, A. Magninb, P. Jay, Viscoplastic flow around a cylinder in an infinite medium, J. Non-Newtonian Fluid Mech. 115 (2003) 27–49 [CrossRef] [Google Scholar]
  27. M. Chatzimina, G.C. Georgioua, I. Argyropaidas, E. Mitsoulis, R.R. Huilgo, Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times, J. Non-Newtonian Fluid Mech. 129 (2005) 117–127 [CrossRef] [Google Scholar]
  28. D.L. Tokpavi, A. Magnin, P. Jay, Very slow flow of Bingham viscoplastic fluid around a circular cylinder, J. Non-Newtonian Fluid Mech. 154 (2008) 65–76 [CrossRef] [Google Scholar]
  29. E. Mitsoulis, S. Galazoulas, Simulation of viscoplastic flow past cylinders in tubes, J Non-Newtonian Fluid Mech. 158 (2009) 132-141 [CrossRef] [Google Scholar]
  30. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., New York, NY, 1980 [Google Scholar]
  31. C. Nouar, R. Devienne, M. Lebouché, Convection thermique pour un fluide de Herschel-Bulkley dans la région d’entrée d’une conduite, Int. J. Heat Mass Trans. 37 (1994) 1–12 [CrossRef] [Google Scholar]
  32. C. Nouar, B. Benaouda-Zouaoui, C. Desaubry, Laminar mixed convection in a horizontal annular duct. Case of thermodependent non-Newtonian fluid, Eur. J. Mech. B - Fluids 19 (2000) 423–452 [CrossRef] [Google Scholar]
  33. J. Peixinho, C. Desaubry, M. Lebouche, Heat transfer of a non-newtonian fluid (carbopol aqueous solution) in transitional pipe flow, Int. J. Heat Mass Trans. 51 (2008) 198–209 [CrossRef] [Google Scholar]
  34. O. Jambal, T. Shigechi, D. Ganbat, S. Momoki, Effects of viscous dissipation and fluid axial heat conduction on heat transfer for non Newtonian fluids in ducts with uniform wall temperature-Part I: parallel and circular duct, Int. J. Heat Mass Trans. 32 (2005) 1165–1173 [CrossRef] [Google Scholar]
  35. R.P. Chhabra, J.F. Richardson, Non-Newtonian flow in the process industries-Fundamentals and engineering applications, Ed. Butterworth-Heinemann, UK, 1999 [Google Scholar]
  36. N. Labsi, Y.K. Benkahla, A. Boutra, A. Ammouri, Heat and flow properties of a temperature dependent viscoplastic fluid including viscous dissipation, J. Food Process. Eng. 36 (2013) 450–461 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.