Open Access
Issue
Mechanics & Industry
Volume 17, Number 5, 2016
Article Number 510
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2015106
Published online 16 June 2016
  1. R.H. MacNeal, Derivation of element stiffness matrices by assumed strain distributions, Nucl. Eng. Des. 70 (1982) 3–12 [CrossRef] [Google Scholar]
  2. K.J. Bathe, E.N. Dvorkin, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int. J. Numer. Meth. Eng. 2 (1985) 367–383 [CrossRef] [Google Scholar]
  3. M.L. Bucalem, K.J. Bathe, Higher-order MITC general shell elements, Int. J. Numer. Meth. Eng. 36 (1993) 3729–3754 [CrossRef] [Google Scholar]
  4. R. Hauptmann, K. Schweizerhof, S. Doll, Extension of the “solid-shell” concept for application to large elastic and large elastoplastic deformations, Int. J. Numer. Meth. Eng. 49 (2000) 1121–1141 [CrossRef] [Google Scholar]
  5. K.Y. Sze, L.Q. Yao, A hybrid stress ANS solid-shell element and its generalization for smart structure modeling. Part I–solid-shell element formulation, Int. J. Numer. Meth. Eng. 48 (2000) 545–564 [CrossRef] [Google Scholar]
  6. J.C. Simo, M.S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Meth. Eng. 29 (1990) 1595–1638 [CrossRef] [Google Scholar]
  7. S. Doll, K. Schweizerhof, R. Hauptmann, C. Freischlager, On volumetric locking of low-order solid and solid-shell elements for finite elastoviscoplastic deformations and selective reduced integration, Eng. Comput. 17 (2000) 874–902 [CrossRef] [Google Scholar]
  8. R.J. Alves de Sousa, R.M. Natal Jorge, R.A.F. Valente, J.M.A. César de Sá, A new volumetric and shear locking-free 3D enhanced strain element, Eng. Comput. 20 (2003) 896–925 [CrossRef] [Google Scholar]
  9. U. Andelfinger, E. Ramm, EAS-Elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements, Int. J. Numer. Meth. Eng. 36 (1993) 1311–1337 [CrossRef] [Google Scholar]
  10. K. Rah, W. Van Paepegem, J. Degrieck, An optimal versatile partial hybrid stress solid-shell element for the analysis of multilayer composites, Int. J. Numer. Meth. Eng. 93 (2013) 201–223 [CrossRef] [Google Scholar]
  11. K. Rah, W. Van Paepegem, J. Degrieck, A novel versatile multilayer hybrid stress solid-shell element, Comput. Mech. 51 (2013) 825–841 [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Büchter, E. Ramm, D. Roehl, Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Meth. Eng. 37 (1994) 2551–2568 [CrossRef] [Google Scholar]
  13. M. Bischoff, E. Ramm, Shear Deformable shell elements for large strains and rotations, Int. J. Numer. Meth. Eng. 40 (1997) 4427–4449 [CrossRef] [Google Scholar]
  14. S. Klinkel, F. Gruttmann, W. Wagner, A continuum based three-dimensional shell element for laminated structures, Comput. Struct. 71 (1999) 43–62 [CrossRef] [Google Scholar]
  15. L. Vu-Quoc, X.G. Tan, Optimal solid shells for non-linear analyses of multilayer composites, I. Statics, Comput. Methods Appl. Mech. Eng. 192 (2003) 975–1016 [CrossRef] [Google Scholar]
  16. A. Hajlaoui, A. Jarraya, I. Kallel-Kamoun, F. Dammak, Buckling analysis of a laminated composite plate with delaminations using the enhanced assumed strain solid shell element, J. Mech. Sci. Technol. 26 (2012) 3213–3221 [CrossRef] [Google Scholar]
  17. N.D. Quy, A. Matzenmiller, A solid-shell element with enhanced assumed strains for higher order shear deformations in laminates, Tech. Mech. 28 (2008) 334–355 [Google Scholar]
  18. L.F. Liu, I.N. Reddy, A higher-order shear deformation theory of laminated elastic shells, Int. J. Eng. Sci. 23 (1985) 319–330 [CrossRef] [Google Scholar]
  19. M. Rastgaar Aagaah, M. Mahinfalah, G. Nakhaie Jazar, Linear static analysis and finite element modeling for laminated composite plates using third order shear theory , Compos. Struct. 62 (2003) 27–39 [CrossRef] [Google Scholar]
  20. J.N. Reddy, S.J. Lee, Vibration suppression of laminated shell structures investigated using higher order shear deformation theory, Smart Mater. Struct. 13 (2004) 1176–1194 [CrossRef] [Google Scholar]
  21. M. Wali, A. Hajlaoui, F. Dammak, Discrete double directors shell element for the functionally graded material shell structures analysis, Comput. Methods Appl. Mech. Eng. 278 (2014) 388–403 [CrossRef] [Google Scholar]
  22. F. Dammak, S. Abid, A. Gakwaya, G. Dhatt, A formulation of the nonlinear discrete Kirchhoff quadrilateral shell element with finite rotations and enhanced strains, Revue Européenne des Elements Finis 14 (2005) 7–31 [CrossRef] [Google Scholar]
  23. F. Bloom, D. Coffin, Handbook of thin plate buckling and post buckling, chapman & Hall/CRC, 2001 [Google Scholar]
  24. A.K. Noor, Stability of multilayered composite plates, Fibre Sci. Technol. 8 (1975) 81–88 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.