Open Access
Issue
Mechanics & Industry
Volume 17, Number 5, 2016
Article Number 509
Number of page(s) 6
DOI https://doi.org/10.1051/meca/2015100
Published online 10 June 2016
  1. C. Tao, D. Shanxu, C. Changsong, Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement, In Power Electronics for Distributed Generation Systems (PEDG), 2nd IEEE International Symposium, 2010, pp. 773-777 [Google Scholar]
  2. A. Woyte, V. Van Thong, R. Belmans, J. Nijs, Voltage fluctuations on distribution level introduced by photovoltaic systems, IEEE Trans. Energy Conversion 21 (2006) 202–209 [CrossRef] [Google Scholar]
  3. S. Cao, W. Weng, J. Chen, W. Liu, G. Yu, J. Cao, Forecast of Solar Irradiance Using Chaos Optimization Neural Networks, In Power and Energy Engineering Conference, APPEEC 2009, Asia-Pacific, pp. 1–4 [Google Scholar]
  4. R. Aguiar, M. Collares-Pereira, TAG: A time-dependent, autoregressive, Gaussian model for generating synthetic hourly radiation, Solar Energy, 49 (1992) 167–174 [CrossRef] [Google Scholar]
  5. L.L. Mora-Lopez, M. Sidrach-de-Cardona, Multiplicative ARMA models to generate hourly series of global irradiation, Solar Energy 63 (1998) 283–291 [CrossRef] [Google Scholar]
  6. J.M. Santos, J.M. Pinazo, J. Canada, Methodology for generating daily clearness index values Kt starting from the monthly average daily value Kt. Determining the daily sequence using stochastic models, Renew. Energy 28 (2003) 1523–1544 [CrossRef] [Google Scholar]
  7. A. Maafi, A. Adane, A two-state Markovian model of global irradiation suitable for photovoltaic conversion, Solar Wind Technology 6 (1989) 247–252 [CrossRef] [Google Scholar]
  8. F.C. Morabito, M. Versaci, Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data, Neural Networks 16 (2003) 493–506 [CrossRef] [Google Scholar]
  9. E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, In Evolutionary Computation, CEC 2007, IEEE Congress, 2007, pp. 4661–4667 [Google Scholar]
  10. M.H. Ahmadi, S. Sorouri Ghare Aghaj, A. Nazeri, Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization. Neural Computing and Application 22 (2013) 1141–1150 [CrossRef] [Google Scholar]
  11. X. Qu, J. Feng, W. Sun, Parallel genetic algorithm model based on AHP and neural networks for enterprise comprehensive business, IEEE Intelligent Conference on International Information Hiding and Multimedia Signal Processing, IIHMSP’08, pp. 897–900 [Google Scholar]
  12. J.H. Doveton, S.E. Prensky, Geological applications of wire line logs: a synopsis of developments and trends, The Log Analyst 33 (1992) 286–303 [Google Scholar]
  13. R. Reed, Pruning algorithms-a survey, IEEE Trans. Neural Networks, 4 (1993) 740–747 [CrossRef] [Google Scholar]
  14. M.H. Ahmadi, M.A. Ahmadib, S.A. Sadatsakkakc, M. Feidtd, Connectionist intelligent model estimates output power and torque of stirling engine, Renewable and Sustainable Energy Reviews 50 (2015) 871–883 [CrossRef] [Google Scholar]
  15. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, M.A. Rosen, Using GMDH Neural Networks to Model the Power and Torque of a Striling Engine, Sustainability 7 (2015) 2243–2255 [CrossRef] [Google Scholar]
  16. S.M. Pourkiaei, M.H. Ahmadi, and S.M. Hasheminejad, Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network, Mechanic & Industry 17 (2016) 105 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.