Open Access
Issue
Mechanics & Industry
Volume 17, Number 7, 2016
STANKIN: Advanced scientific studies and research in Mechanical Engineering
Article Number 702
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2016072
Published online 23 December 2016
  1. S. Marinković, S. Stanković, Z. Rakočević, Effects of cemented carbide surface pretreatment in combustion flame chemical vapour deposition of diamond, Thin Solid Films 354 (1999) 118–128 [CrossRef] [Google Scholar]
  2. S. Stankovic, Z. Rakocevic, S. Marinkovic, Effects of the pretreatment of a cemented carbide surface on its properties and on the properties of diamond coatings deposited by oxygen-acetylene flame CVD, Diamond and Related Materials 8 (1999) 207–210 [CrossRef] [Google Scholar]
  3. B. Sahoo, A.K. Chattopadhyay, On effectiveness of various surface treatments on adhesion of HF-CVD diamond coating to tungsten carbide inserts, Diamond and Related Materials 11 (2002) 1660–1669 [CrossRef] [Google Scholar]
  4. J.M. Arroyo, A.E. Diniz, M.S.F. de Lima, Cemented carbide surface modifications using laser treatment and its effects on hard coating adhesion, Surf. Coat. Technol. 204 (2010) 2410–2416 [CrossRef] [Google Scholar]
  5. D. Neves, A.E. Diniz, M.S.F. Lima. Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating, Appl. Surf. Sci. 282 (2013) 680–688 [Google Scholar]
  6. M. Yang, et al.; Surface modification of WC-based cemented carbide by one-pot nonvapor deposition method derived Al2O3 coatings, Ceramics Int. 42 (2016) 11509–11514 [CrossRef] [Google Scholar]
  7. K.D. Bouzakis, N. Michailidis, S. Hadjiyiannis, K. Efstathiou, E. Pavlidou, G. Erkens, S. Rambadt, I. Wirth, Improvement of PVD coated inserts cutting performance, through appropriate mechanical treatments of substrate and coating surface, Surf. Coat. Technol. 146–147 (2001) 443–450 [CrossRef] [Google Scholar]
  8. C. Wang, C. Jiang, F. Cai, Y. Zhao, K. Zhu, Z. Chai, Effect of shot peening on the residual stresses and microstructure of tungsten cemented carbide, Mater. Design 95 (2016) 159–164 [CrossRef] [Google Scholar]
  9. F. Zhang, X. Zhu, M. Lei, Microstructure and properties of WC-Co cemented carbide irradiated by high-intensity pulsed ion beam, Jinshu Rechuli/Heat Treatment of Metals 41 (2016) 118–124 [Google Scholar]
  10. A.A. Vereschaka, M.A. Volosova, S.N. Grigoriev, A.S. Vereschaka. Development of wear-resistant complex for high-speed steel tool when using process of combined cathodic vacuum arc deposition, Procedia CIRP 9 (2013) 8–12 [CrossRef] [Google Scholar]
  11. A.A. Vereschaka, M.A. Volosova, A.D. Batako, A.S. Vereshchaka B.Y. Mokritskii, Development of wear-resistant coatings compounds for high-speed steel tool using a combined cathodic vacuum arc deposition, Int. J. Adv. Manuf. Technol. 84 (2016) 1471–1482 [Google Scholar]
  12. S.N. Grigor’ev, S.V. Fedorov, M.D. Pavlov, A.A. Okun’kova, Ye Min So, Complex surface modification of carbide tool by Nb plus Hf plus Ti alloying followed by hardfacing (Ti plus Al)N, J. Friction and Wear 34 (2013) 14–18 [Google Scholar]
  13. S.N. Grigoriev, A.A. Vereschaka, A.S. Vereschaka, A.A. Kutin, Cutting tools made of layered composite ceramics with nano-scale multilayered coatings, Procedia CIRP 1 (2012) 318–323 [Google Scholar]
  14. A.A. Vereshchaka, A.S. Vereshchaka, O. Mgaloblishvili, M.N. Morgan, A.D. Batako, Nano-scale multilayered-composite coatings for the cutting tools, Int. J. Adv. Manuf. Technol. 72 (2014) 303–317 [CrossRef] [Google Scholar]
  15. A.O. Volkhonskii, A.A. Vereshchaka, I.V. Blinkov, A.S. Vereshchaka, A.D. Batako, Filtered cathodic vacuum Arc deposition of nano-layered composite coatings for machining hard-to-cut materials, Int. J. Adv. Manuf. Technol. 84 (2016) 1647–1660 [Google Scholar]
  16. A.A. Vereschaka, A.S. Vereschaka, A.D. Batako, O. Kh. Hojaev, B.Y. Mokritskii, Development and research of nanostructured multilayer composite coatings for tungsten-free carbides with extended area of technological applications, Int. J. Adv. Manuf. Technol. 87 (2016) 3449–3457 [CrossRef] [Google Scholar]
  17. A.A. Vereschaka, S.N. Grigoriev, A.S. Vereschaka, A. Yu. Popov, A. D. Batako, Nano-scale multilayered composite coatings for cutting tools operating under heavy cutting conditions, Procedia CIRP 14 (2014) 239–244 [CrossRef] [Google Scholar]
  18. A.B. Markov, et al., A PHTM-II facility for the surface alloying, Instruments and Experimental Techniques 54 (2011) 862–866 [CrossRef] [Google Scholar]
  19. T. Cselle, Nanostracturierte Schichten in der Werkstaff, Platit A. G. Warkzeugtagung, 2002 [Google Scholar]
  20. P.J. Martin, O. Knotek, A. Scherey, et al., Handbook of Film Process Technology, London. IOP Publishing, 1995 [Google Scholar]
  21. H. Holleck, Nanoskalige Schutyschichten fur hochbeanspruchte Bauteile. Holeck H., Leiste H., Ulrich A. NACHRICHEN – Forschungszentrum Karlsruhe Jahrg 31 (1999) 13–20 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.