Open Access
Mechanics & Industry
Volume 18, Number 1, 2017
Article Number 112
Number of page(s) 13
Published online 15 December 2016
  1. A. Seireg, A survey of optimisation of mechanical design, J. Eng. Ind. TASME 94 (1972) 495–499 [CrossRef] [Google Scholar]
  2. A.A. Seireg, J. Rodriguez, Optimizing the shape of mechanical elements and structures, CRC Press, Cleveland, OH, 1997 [Google Scholar]
  3. J. Ahluwalia, S.K. Gupta, V.P. Agrawal, Computer-aided optimum selection of roller bearings, Comput.-Aid. Design 25 (1993) 493–499 [CrossRef] [Google Scholar]
  4. H. Aramaki, Rolling Bearing Analysis Program Package “BRAIN”, NSK Technical Journal Motion & Control, 1997, No. 3, pp. 15–24 [Google Scholar]
  5. D.-H. Choi, K.-C. Yoon, A Design Method of an Automotive Wheel-Bearing Unit With Discrete Design Variables Using Genetic Algorithms, J. Tribol. TASME 123 (2001) 181–187 [CrossRef] [Google Scholar]
  6. K. Kalita, R. Tiwari, S.K. Kakoty, Multi-objective optimisation in rolling element bearing system design, In: Proceedings of the Int. Conf. on Optimisation (SIGOPT 2002), Lambrecht, Germany, 17–22 February 2002 [Google Scholar]
  7. I. Chakraborty, V. Kumar, S.B. Nair, R. Tiwari, Rolling element bearing design through genetic algorithms, Eng. Optimiz. 35 (2003) 649–659 [CrossRef] [Google Scholar]
  8. B.R. Rao, R. Tiwari, Optimum design of rolling element bearings using genetic algorithms, Mech. Mach. Theory 42 (2007) 233–250 [CrossRef] [Google Scholar]
  9. S. Gupta, R. Tiwari, S.B. Nair, Multi-objective design optimisation of rolling bearings using genetic algorithms, Mech. Mach. Theory 42 (2007) 1418–1443 [CrossRef] [Google Scholar]
  10. V. Savsani, R.V. Rao, D.P. Vakharia, Multi-objective design optimization of ball bearings using a modified particle swarm optimization technique, Int. J. Des. Eng. 1 (2008) 412–433 [Google Scholar]
  11. Y. Wei, R. Chengzu, Optimal design of high speed angular contact ball bearing using a multiobjective evolution algorithm, In: Proceedings of the IEEE Int. Conf. on Computing, Control and Industrial Engineering (CCIE 2010), Wuhan, China, 5–6 June 2010 [Google Scholar]
  12. K.S. Kumar, R. Tiwari, R.S. Reddy, Development of an optimum design methodology of cylindrical roller bearings using genetic algorithms, Int. J. Comput. Meth. Eng. Sci. Mech. 9 (2008) 321–341 [CrossRef] [Google Scholar]
  13. K.S. Kumar, R. Tiwari, V.V.N. Prasad, An Optimum Design of Crowned Cylindrical Roller Bearings Using Genetic Algorithms, J. Mech. Des. TASME 131 (2009) 051011-1–051011-14 [CrossRef] [Google Scholar]
  14. R.J. Parker, S.I. Pinel, H.R. Signer, Performance of Computer-Optimized Tapered-Roller Bearings to 2.4 Million DN, J. Tribol. TASME 103 (1981) 13–20 [CrossRef] [Google Scholar]
  15. N. Chaturbhuj, S.B. Nair, R. Tiwari, Design optimization for tapered roller bearings using genetic algorithms, In: Proceedings of the Int. Conf. on Artificial Intelligence (IC-AI 03 2003), Las Vegas, Nevada, 23–26 June 2003, CSREA Press, ISBN 1-932415-12-2, Vol. 1, pp. 421−427. [Google Scholar]
  16. B. Walker, High Speed Tapered Roller Bearing Optimization, MS Thesis, Rensselaer Polytechnic Institute, Hartford, Connecticut, April 2008 [Google Scholar]
  17. Z. Wang, L. Meng, H. Wensi, E. Zhang, Optimal Design of Parameters for Four Column Tapered Roller Bearing, Appl. Mech. Mater. 63-64 (2011) 201–204 [CrossRef] [Google Scholar]
  18. R. Tiwari, K.K. Sunil, R.S. Reddy, An Optimal Design Methodology of Tapered Roller Bearings Using Genetic Algorithms, Int. J. Comp. Meth. Eng. Sci. Mech. 13 (2012) 108–127 [CrossRef] [Google Scholar]
  19. R. Tiwari, R. Chandran, Thermal Based Optimum Design of Tapered Roller Bearing Through Evolutionary Algorithm, In: Proceedings of the ASME 2013 Gas Turbine India Conference, Bangalore, Karnataka, India, 5–6 December 2013 (paper no. GTINDIA2013-3792) [Google Scholar]
  20. E. Dragoni, Optimal design of radial cylindrical roller bearings for maximum load-carrying capacity, Proc. IMechE, Part C: J. Mech. Eng. Sci. 227 (2013) 2393–2401 [CrossRef] [Google Scholar]
  21. E. Dragoni, Optimal Design of Paired Tapered Roller Bearings Under Centred Radial and Axial Static Loads, Mech Ind, (in press) [Google Scholar]
  22. ISO 281, Rolling bearings – Dynamic load ratings and rating life, 2007 [Google Scholar]
  23. H. Wiesner, Rolling bearings TC4 meets GPS TC213, Evolution 19 (2012) 24–28 [Google Scholar]
  24. ISO 492, Rolling bearings – Radial bearings – Tolerances, 2002 [Google Scholar]
  25. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985 [Google Scholar]
  26. T.A. Harris, Rolling Bearing Analysis, 4th edition John Wiley & Sons, New York, 2000 [Google Scholar]
  27. NSK, Bearing internal load distribution and displacement, http://–&"pno=nsk˙cat˙e728g˙5 (access date 29/5/2015) [Google Scholar]
  28. INA, BEARINX-online Shaft Calculation, /en/products˙services/calculating/bearinxonline/bearinx˙online.jsp (access date 29/5/2015) [Google Scholar]
  29. G. Niemann, H. Winter, B.-R. Höhn, Maschinenelemente, Springer, Germany, Berlin, 2005, Vol. I [Google Scholar]
  30. ISO 355, Rolling bearings – Tapered roller bearings – Boundary dimensions and series designations, 2007 [Google Scholar]
  31. TIMKEN, Tapered Roller Bearing Catalogue, (access date 29/5/2015) [Google Scholar]
  32. INA, Tapered Roller Bearing Catalogue, de/de/products˙services/rotativ˙products/tapered˙roller˙bearings/tapered˙roller˙bearings.jsp (access date 29/5/2015) [Google Scholar]
  33. G. Niemann, Maschinenelemente, Springer, Berlin, Germany, 1981, Vol. I [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.