Open Access
Issue |
Mechanics & Industry
Volume 18, Number 2, 2017
|
|
---|---|---|
Article Number | 212 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/meca/2016017 | |
Published online | 31 January 2017 |
- F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power-output, Am. J. Phys. 43 (1975) 22–24 [CrossRef] [Google Scholar]
- I.I. Novikov, The efficiency of atomic power stations, J. Nucl. Energy 11 (1958) 25–28 [Google Scholar]
- F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69 (1991) 7465–7469 [CrossRef] [Google Scholar]
- Z. Yan, Comment on ecological optimization criterion for finite-time heat-engines, J. Appl. Phys. 73 (1993) 3583 [CrossRef] [Google Scholar]
- L. Chen, W. Zhang, F. Sun, Power, efficiency, entropy-generation rate, ecological optimization for a class of generalized irreversible universal heat engine cycles, Appl. Energy 84 (2007) 512–525 [CrossRef] [Google Scholar]
- L. Chen, J. Zhou, F. Sun, C. Wu, ecological optimization for generalized irreversible Carnot engines, Appl. Energy 77 (2004) 327–338 [CrossRef] [Google Scholar]
- Y. Huang, D. Sun, Y. Kang, Performance optimization for an irreversible four temperature-level absorption heat pump, Int. J. Therm. Sci. 4 (2008) 7479–7485 [Google Scholar]
- Z. Yan, G. Lin, Ecological optimization criterion for an irreversible three-heat-source refrigerator, Appl. Energy 66 (2000) 213–224 [CrossRef] [Google Scholar]
- C. Cheng, C. Chen, The ecological optimization of an irreversible Carnot heat-engine, J. Phys. D 30 (1997) 1602–1609 [CrossRef] [Google Scholar]
- D. Xia, L. Chen, F. Sun, Universal ecological performance for endoreversible heat engine cycles, Int. J. Ambient Energy 27 (2001) 15–20. [CrossRef] [Google Scholar]
- W. Zhang, L. Chen, F. Sun, C. Wu, Exergy-based ecological optimal performance for a universal endoreversible thermodynamic cycle, Int. J. Ambient Energy 28 (2007) 51–56 [CrossRef] [Google Scholar]
- L. Chen, X. Zhu, F. Sun, C. Wu, Exergy-based ecological optimization of linear phenomenological heat transfer law irreversible Carnot engines, Appl. Energy 83 (2006) 573–582 [CrossRef] [Google Scholar]
- X. Zhu, L. Chen, F. Sun, C. Wu, The ecological optimization of a generalized irreversible Carnot engine with a generalized heat-transfer law, Int. J. Ambient Energy 24 (2003) 189–194 [CrossRef] [Google Scholar]
- X. Zhu, L. Chen, F. Sun, C. Wu, Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot engine, Open Syst. Inf. Dyn. 12 (2005) 249–260 [CrossRef] [MathSciNet] [Google Scholar]
- J. Li, L. Chen, F. Sun, Ecological performance of an endoreversible Carnot heat engine with complex heat transfer law, Int. J. Sustain. Energy 30 (2011) 55–64 [CrossRef] [Google Scholar]
- J. Li, L. Chen, F. Sun, Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law, Int. J. Energy Environ. 2 (2011) 57–70 [Google Scholar]
- Y. Tu, L. Chen, F. Sun, C. Wu, Exergy-based ecological optimization for an endoreversible Brayton refrigeration cycle, Int. J. Exergy 3 (2006) 191–201 [CrossRef] [Google Scholar]
- L. Chen, X. Zhu, F. Sun, C. Wu, Ecological optimization for generalized irreversible Carnot refrigerators, J. Phys. D 38 (2005) 113–118 [CrossRef] [Google Scholar]
- L. Chen, X. Zhu, F. Sun, C. Wu, Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump, Appl. Energy 84 (2007) 78–88 [CrossRef] [Google Scholar]
- X. Zhu, L. Chen, F. Sun, C. Wu, Exergy based ecological optimization for a generalized irreversible Carnot refrigerator, J. Energy Inst. 79 (2006) 42–46 [CrossRef] [Google Scholar]
- L. Chen, X. Zhu, F. Sun, C. Wu, Ecological optimization of a generalized irreversible Carnot refrigerator for a generalized heat transfer law, Int. J. Ambient Energy 28 (2007) 213–219 [CrossRef] [Google Scholar]
- J. Li, L. Chen, F. Sun, C. Wu, Ecological performance of an endoreversible Carnot refrigerator with complex heat transfer law, Int. J. Ambient Energy 32 (2011) 31–36. [CrossRef] [Google Scholar]
- L. Chen, J. Li, F. Sun, Ecological optimization of a generalized irreversible Carnot refrigerator in case of Q∞(ΔT n)m, Int. J. Sustain. Energy 31 (2012) 59–72 [CrossRef] [Google Scholar]
- S.K. Tyagi, S.C. Kaushik, R. Salohtra, Ecological optimization, parametric study of irreversible Stirling, Ericsson heat pumps, J. Phys. D 35 (2002) 2058–2065 [CrossRef] [Google Scholar]
- X. Zhu, L. Chen, F. Sun, C. Wu, Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot heat pump, Int. J. Exergy 2 (2005) 423–436 [CrossRef] [Google Scholar]
- X. Zhu, L. Chen, F. Sun, C. Wu, The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law, J. Energy Inst. 78 (2005) 5–10 [CrossRef] [Google Scholar]
- L. Chen, J. Li, F. Sun, C. Wu, Effect of a complex generalized heat transfer law on ecological performance of an endoreversible Carnot heat pump, Int. J. Ambient Energy 30 (2009) 102–108 [CrossRef] [Google Scholar]
- J. Li, L. Chen, F. Sun, Optimal ecological performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law, Termotehnica Therm. Eng. 13 (2009) 61–68 [Google Scholar]
- X. Liu, L. Chen, F. Wu, F. Sun, Ecological optimization of an irreversible harmonic oscillator Carnot heat engine, Sci. China Ser. G: Phys. Mech. Astron. 52 (2009) 1976–1988 [CrossRef] [Google Scholar]
- W. Wang, L. Chen, F. Sun, C. Wu, Optimal heat conductance distribution, optimal intercooling pressure ratio for power optimization of an irreversible closed intercooled regenerated Brayton cycle, J. Energy Inst. 79 (2006) 116–119 [CrossRef] [Google Scholar]
- W. Wang, L. Chen, F. Sun, Ecological optimization of an irreversible ICR gas turbine cycle, Int. J. Exergy 9 (2011) 66–79 [CrossRef] [Google Scholar]
- S.K. Tyagi, S.C. Kaushik, R. Salhotra, Ecological optimization, performance study of irreversible Stirling, Ericsson heat engines, J. Phys. D 35 (2002) 2668–2675 [CrossRef] [Google Scholar]
- X. Zhu, L. Chen, F. Sun, C. Wu, Exergy-based ecological optimization for a generalized Carnot refrigerator, J. Energy Inst. 79 (2006) 42–46 [CrossRef] [Google Scholar]
- C. Wu, L. Chen, F. Sun, Ecological optimization performance of an irreversible quantum SI engine powering with an ideal Fermi gas, Open Syst. Inf. Dyn. 13 (2006) 55–66. [CrossRef] [MathSciNet] [Google Scholar]
- E. Acıkkalp, Models for optimum thermo-ecological criteria of actual thermal cycles, Therm. Sci. 17 (2013) 915–930 [CrossRef] [Google Scholar]
- E. Acıkkalp, Modified thermo-ecological optimization for refrigeration systems and an application for irreversible four-temperature-level absorption refrigerator, Int. J. Energy Environ. Eng. 4 (2013) 20. [CrossRef] [Google Scholar]
- Y. Ust, B. Sahin, O.S. Sogut, Performance analysis, optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion, Appl. Energy 82 (2005) 23–39 [CrossRef] [Google Scholar]
- Y. Ust, B. Sahim, Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion, Int. J. Refrig. 30 (2007) 527–534 [CrossRef] [Google Scholar]
- Y. Ust, B. Sahin, A. Kodal, I.H. Akcay, Ecological coefficient of performance analysis, optimization of an irreversible regenerative-Brayton heat engine, Appl. Energy 83 (2006) 558–572 [CrossRef] [Google Scholar]
- S.S. Sogut, Y. Ust, B. Sahin, The effects of intercooling, regeneration on thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs, J. Phys. D 39 (2006) 4713–4721 [CrossRef] [Google Scholar]
- Y. Ust, Effect of regeneration on the thermo-ecological performance analysis, optimization of irreversible air refrigerators, Heat Mass Transfer 46 (2010) 469–478 [CrossRef] [Google Scholar]
- Y. Ust, Performance analysis, optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion, Appl. Therm. Eng. 29 (2009) 47–55. [CrossRef] [Google Scholar]
- Y. Ust, O.S. Sogut, B. Sahin, A. Durmayaz, Ecological coefficient of performance ECOP optimization for an irreversible Brayton heat engine with variable temperature thermal reservoirs, J. Energy Inst. 79 (2006) 47–52 [CrossRef] [Google Scholar]
- Y. Ust, B. Sahin, A. Kodal, Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion, Int. J. Therm. Sci. 45 (2006) 94–101. [CrossRef] [Google Scholar]
- Y. Ust, B. Sahin, A. Kodal, Ecological coefficient of performance ECOP optimization for generalized irreversible Carnot heat engines, J. Energy Inst. 78 (2005) 145–151. [CrossRef] [Google Scholar]
- Y. Ust, B. Sahin, A. Safa, Ecological performance analysis of an endoreversible regenerative Brayton heat-engine, Appl. Energy 80 (2005) 247–260 [CrossRef] [Google Scholar]
- Y. Ust, A.V. Akkaya, A. Safa, Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion, J. Energy Inst. 84 (2011) 66–72 [CrossRef] [Google Scholar]
- A.V. Akkaya, B. Sahin, H.H. Erdem, An analysis of SOFC/GT CHP system based on exergetic performance criteria, Int. J. Hydrog. Energy 10 (2008) 2566–2577 [CrossRef] [Google Scholar]
- A.V. Akkaya, B. Sahin, H.H. Erdem, Exergetic performance coefficient analysis of a simple fuel cell system, Int. J. Hydrog. Energy 17 (2007) 4600–4609 [CrossRef] [Google Scholar]
- Y. Ust, B. Sahin, A. Kodal, Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion, Appl. Energy 84 (2007) 1079–1091 [CrossRef] [Google Scholar]
- Y. Ust, B. Sahin, T. Yilmaz, Optimization of a regenerative gas-turbine cogeneration system based on a new exergetic performance criterion: exergetic performance coefficient EPC, Proc. Inst. Mech. Eng. A 221 (2007) 447–456 [CrossRef] [Google Scholar]
- E. Acıkkalp, H. Yamık, Limits and optimization of power input or output of actual thermal cycles, Entropy 15 (2013) 3219–3248 [CrossRef] [Google Scholar]
- F. Wu, L. Chen, F. Sun, C. Wu, F. Guo, Q. Li, Quantum degeneracy effect on performance of irreversible Otto cycle with ideal Bose gas, Energy Convers. Manage. 47 (2006) 3008–3018 [CrossRef] [Google Scholar]
- J. He, H. Wang, S. Liu, Performance characteristics of a quantum Diesel refrigeration cycle, Energy Convers. Manage. 50 (2009) 933–937 [CrossRef] [Google Scholar]
- H. Saygın, A. ŞiŞman, Brayton refrigeration cycles working under quantum degeneracy conditions, Appl. Energy 69 (2001) 77–85 [CrossRef] [Google Scholar]
- J. He, J. Chen, B. Hua, Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas, Appl. Energy 72 (2002) 541–554 [CrossRef] [Google Scholar]
- Y. Yang, B. Lin, J. Chen, Influence of regeneration on the performance of a Brayton refrigeration-cycle working with an ideal Bose-gas, Appl. Energy 83 (2006) 99–112 [CrossRef] [Google Scholar]
- B. Lin, Y. Zhang, J. Chen, Influence of quantum degeneracy and regeneration on the performance of Bose-Stirling refrigeration-cycles operated in different temperature regions, Appl. Energy 83 (2006) 513–535 [CrossRef] [Google Scholar]
- W. Nie, Q. Liao, C.Q. Zhang, J. He, Micro-/nanoscaled irreversible Otto engine cycle with friction loss and boundary effects and its performance characteristics, Energy 35 (2010) 4658–4662 [CrossRef] [Google Scholar]
- J. Guo, X. Zhang, G. Su, J. Chen, The performance analysis of a micro-/nanoscaled quantum heat engine, Phys. A 391 (2012) 6432–6439 [CrossRef] [Google Scholar]
- H. Wang, S. Liu, J. He, Optimum criteria of an irreversible quantum Brayton refrigeration cycle with an ideal Bose gas, Physica B 403 (2008) 3867–3878 [CrossRef] [Google Scholar]
- J. Liu, B. Lin, W. Hu, J. Chen, Influence of multi-irreversibilities on the performance of a Brayton refrigeration cycle working with an ideal Bose or Fermi gas, Int. J. Therm. Sci. 47 (2008) 1374–1381 [CrossRef] [Google Scholar]
- H. Wang, S. Liu, J. He, Performance analysis and parametric optimum criteria of a quantum Otto heat engine with heat transfer effects, Appl. Therm. Eng. 29 (2009) 706–711 [CrossRef] [Google Scholar]
- A. ŞiŞman, H. Saygin, On the power cycles working with ideal quantum gases: I. The Ericsson cycle, J. Phys. D 32 (1999) 664–670. [CrossRef] [Google Scholar]
- J. Chen, J. He, B. Hua, The influence of regenerative losses on the performance of a Fermi Ericsson refrigeration cycle, J. Phys. A 35 (2002) 7995–8004 [CrossRef] [MathSciNet] [Google Scholar]
- Y. Zhang, B. Lin, J. Chen, The influence of quantum degeneracy and irreversibility on the performance of a Fermi quantum refrigeration cycle, J. Phys. A 37 (2004) 7485–7497 [CrossRef] [MathSciNet] [Google Scholar]
- A. ŞiŞman, H. Saygin, Efficiency analysis of a Stirling power cycle under quantum degeneracy conditions, Phys. Scr. 63 (2001) 263–267 [CrossRef] [Google Scholar]
- A. ŞiŞman, H. Saygin, Re-optimization of Otto power cycles working with ideal quantum gasses, Phys. Scr. 64 (2001) 108–112 [CrossRef] [Google Scholar]
- H. Wang, S. Liu, J. Du, Performance analysis and parametric optimum criteria of a regeneration Bose-Otto engine, Phys. Scr. 79 (2009) 055004 [CrossRef] [Google Scholar]
- W. Hao, W. Guo-Xing, Optimization criteria of a Bose Brayton heat engine, Chin. Phys. B 21 (2012) 010505 [CrossRef] [Google Scholar]
- A. ŞiŞman, H. Saygin, The improvement effect of quantum degeneracy on the work from a Carnot cycle, Appl. Energy 68 (2001) 367–376 [CrossRef] [Google Scholar]
- H. Saygın, A. ŞiŞman, Brayton refrigeration cycles working under quantum degeneracy conditions, Appl. Energy 69 (2001) 77–85 [CrossRef] [Google Scholar]
- B. Lin, J. Chen, The performance analysis of a quantum Brayton refrigeration cycle with ideal Bose gas, Open Syst. Inf. Dyn. 10 (2003) 147–157 [CrossRef] [Google Scholar]
- B. Lin, J. Chen, The influence of quantum degeneracy on the performance of a Fermi Brayton engine, Open Syst. Inf. Dyn. 11 (2004) 87–99 [CrossRef] [MathSciNet] [Google Scholar]
- F. Wu, L. Chen, F. Sun, C. Wu, F. Guo, Optimal performance of an irreversible quantum Brayton refrigerator with ideal Bose gases, Phys. Scr. 73 (2006) 452–457 [CrossRef] [Google Scholar]
- U. Lucia, Quanta and entropy generation, Physica A 419 (2015) 115–121. [CrossRef] [Google Scholar]
- U. Lucia, Maximum or minimum entropy generation for open systems? Physica A 391 (2012) 3392–3398 [CrossRef] [MathSciNet] [Google Scholar]
- U. Lucia, Maximum entropy generation and k-exponential model, Physica A 389 (2010) 4558–4563 [CrossRef] [Google Scholar]
- U. Lucia, Irreversibility, entropy and incomplete information, Physica A 388 (2009) 4025–4033 [CrossRef] [MathSciNet] [Google Scholar]
- J. Lin, L. Chen, C. Wu, et al., Finite-time thermodynamic performance of Dual cycle, Int. J. Energy Res. 23 (1999) 765–772 [CrossRef] [Google Scholar]
- W. Wang, L. Chen, F. Sun, et al., The effects of friction on the performance of an air stand Dual cycle, Exergy Int. J. 2 (2002) 340–344 [CrossRef] [Google Scholar]
- L. Chen, Y. Ge, F. Sun, et al., Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible Dual cycle, Energy Convers. Manage. 47 (2006) 3224–3234 [CrossRef] [Google Scholar]
- Y. Ge, L. Chen, F. Sun, Finite time thermodynamic modeling and analysis for an irreversible Dual cycle, Math. Comput. Modell. 50 (2009) 101–108 [CrossRef] [Google Scholar]
- T. Özyer, M. Zhang, R. Alhajj, Integrating multi-objective genetic algorithm based clustering and data partitioning for skyline computation, Appl. Intell. 35 (2011) 110–122 [CrossRef] [Google Scholar]
- O. Beatrice, J.R. Brian, H. Franklin, Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows, Appl. Intell. 24 (2006) 17–30 [CrossRef] [Google Scholar]
- I. Blecic, A. Cecchini, G. Trunfio, A decision support tool coupling a causal model and a multi-objective genetic algorithm, Appl. Intell. 26 (2007) 125–137 [CrossRef] [Google Scholar]
- D.A.V. Veldhuizen, G.B. Lamont, Multi objective evolutionary algorithms analyzing the state-of-the-art, Evol. Comput. 8 (2000) 125–47 [CrossRef] [PubMed] [Google Scholar]
- A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Safety 91 (2006) 992–1007 [CrossRef] [Google Scholar]
- M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimiaghalam, Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss, Renew. Energy 2013 (60) 313–22 [Google Scholar]
- M.H. Ahmadi, H. Sayyaadi, A.H. Mohammadi, A. Marco, Barranco-Jimenez. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm, Energy Convers. Manage. 73 (2013) 370–380 [CrossRef] [Google Scholar]
- Ahmadi MH, Sayyaadi H, Dehghani S, Hosseinzade H. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power, Energy Convers. Manage. 75 (2013) 282–291 [CrossRef] [Google Scholar]
- M.H. Ahmadi, S. Dehghani, A.H. Mohammadi, M. Feidt, A. Marco, Barranco-Jimenez. Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria, Energy Convers. Manag. 75 (2013) 635–642 [CrossRef] [Google Scholar]
- Ahmadi Pouria, Dincer Ibrahim, Rosen Marc A. Thermodynamic, modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system. Energy Convers. Manage. 76 (2013) 282–300 [Google Scholar]
- A. Lazzaretto, A. Toffolo, Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design, Energy 29 (2004) 1139–1157 [CrossRef] [Google Scholar]
- S. Toghyani, A. Kasaeian, M.H. Ahmadi, Multi-objective optimization of Stirling engine using non-ideal adiabatic method, Energy Convers. Manag. 80 (2014) 54–62 [CrossRef] [Google Scholar]
- A. Toffolo, A. Lazzaretto, Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design, Energy 27 (2002) 549–567 [CrossRef] [Google Scholar]
- M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis, Energy Convers. Manage. 76 (2013) 561–570 [CrossRef] [Google Scholar]
- Mo.H. Ahmadi, M. Ali Ahmadi, A. H. Mohammadi, M. Feidt, S. Mohsen Pourkiaei, Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle, Energy Convers. Manage. 82 (2014) 351–360 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, A.H. Mohammadi, M. Mehrpooya, M. Feidt, Thermodynamic optimization of Stirling heat pump based on multiple criteria, Energy Convers. Manage. 80 (2014) 319–328 [CrossRef] [Google Scholar]
- M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, A. Marco, Barranco-Jimenez Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm, Energy Convers. Manag. 75 (2013) 438–445 [CrossRef] [Google Scholar]
- M.H. Ahmadi, A.H. Mohammadi, S.M. Pourkiaei, Optimisation of the thermodynamic performance of the Stirling engine. Int. J. Ambient Energy, DOI: 10.1080/01430750.2014.907211 [Google Scholar]
- H. Sayyaadi, M. Hossein Ahmadi, S. Dehghani, Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological Criteria. J. Energy Eng., DOI: 10.1061/(ASCE)EY.1943-7897.0000191 (2014) 04014012 [Google Scholar]
- R. Soltani, P. Mohammadzadeh Keleshtery, M. Vahdati, M.H. Khoshgoftar Manesh , M.A. Rosen, M. Amidpour, Multi-objective optimization of a solar-hybrid cogeneration cycle: Application to CGAM problem, Energy Convers. Manage. 81 (2014) 60–71 [CrossRef] [Google Scholar]
- Ahmadi MH, Ahmadi MA, Mehrpooya M, Hosseinzade H, Feidt M. Thermodynamic and thermoeconomic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration, Energy Convers. Manage. 88 (2014) 1051–9 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle, Energy Convers. Manage. 89 (2015) 147–155 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, M. Sameti, Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump, Energy Convers. Manag. 90 (2015) 175–183 [CrossRef] [Google Scholar]
- M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Performance optimization of a solar-driven multi-step irreversible brayton cycle based on a multi-objective genetic algorithm, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles. DOI: dx.doi.org/10.2516/ogst/2014028 (2014) [Google Scholar]
- A. ŞiŞman, Surface dependency in thermodynamics of ideal gases, J. Phys. A 37 (2004) 11353–11361 [CrossRef] [Google Scholar]
- A. ŞiŞman, I. Muller, The Casimir-like size effects in ideal gases, Phys. Lett. A 320 (2004) 360–366 [CrossRef] [Google Scholar]
- Emin Açıkkalp, Necmettin Caner, Determining performance of an irreversible nano scale dual cycle operating with Maxwell-Boltzmann gas, Physica A 424 (2015) 342–349 [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.