Open Access
Issue
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 219
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2016031
Published online 16 March 2017
  1. C.R. Peterson, P.G. Hill, Mechanics and Thermodynamics of Propulsion, Addition-Wesley Publishing Company Inc., New York, USA, 1965 [Google Scholar]
  2. G.P. Sutton, O. Biblarz, Rocket Propulsion Elements, 8e édition, John Wiley and Sons, 2010 [Google Scholar]
  3. T. Zebbiche, Z. Youbi, Supersonic two-dimensional minimum length nozzle design at high temperature. Application for air, Chinese J. Aeronautics 20 (2007) 29−39 [CrossRef] [Google Scholar]
  4. T. Zebbiche, Stagnation temperature effect on the supersonic axisymmetric minimum length nozzle design with application for air, Adv. Space Res. 48 (2011) 1656−1675 [CrossRef] [Google Scholar]
  5. H. Gerald, L. Hans, V.N. Thong, E.D. Gennady, Advanced Rocket Nozzle, J. Propuls. Power 14 (1998) 316−326 [Google Scholar]
  6. G. Hagemann, H. Immich, M. Terhardt, Flow Phenomena in advanced rocket nozzles-The plug nozzle, AIAA-1998-3522, 34th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, July 13-15, 1998 [Google Scholar]
  7. G. Hagemann, H. Immich, T. Van Nguyen, G.E. Dumnov, Advanced Rocket Nozzles, J. Propuls. Power 14 (1998) 620−634 [CrossRef] [Google Scholar]
  8. G. Hagemann, H. Immich, A. Preuss, Advanced Nozzle Concepts for Future Rocket Engine Applications, 4th International Conference on Launcher Technology, Liege, Belgium, December 3−6, 2002 [Google Scholar]
  9. F.J. Malina, Characteristics of the rocket motor based on the theory of perfect gases, J. Franklin Inst. 230 (1940) 433−450 [Google Scholar]
  10. C.B. Johnson, L.R. Boney, A Method for Calculating a Real-Gas Two-Dimensional Nozzle Contour Including the Effects of Gamma, NASA TM X-3243, Sep. 1975 [Google Scholar]
  11. T. Zebbiche, Z. Youbi, Supersonic Flow Parameters at High Temperature. Application for Air in nozzles, German Aerospace Congress 2005, DGLR-2005-0256, 26-29 Sep. 2005, Friendrichshafen, Germany [Google Scholar]
  12. T. Zebbiche, Z. Youbi, Effect of stagnation temperature on the supersonic flow parameters with application for air in nozzles, Aeronautical J. 111 (2007) 31−40 [Google Scholar]
  13. T. Zebbiche, Z. Youbi, Supersonic Two-Dimernsional Minimum Length Nozzle Design at High Temperature. Application for Air, AIAA-2006-4599, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, July 09-12, 2006 [Google Scholar]
  14. T. Zebbiche, Z. Youbi, Design of Two-Dimensional Supersonic Minimum Length Nozzle at High Temperature. Application for Air, German Aerospace Congress, Friendrichshafen, Germany, 26-29 September 2005, DGLR 2005−257 [Google Scholar]
  15. T. Zebbiche, Z. Youbi, Supersonic plug nozzle design at high temperature. Application for air, Chinese J. Aeronautics 20 (2007) 15−28 [CrossRef] [Google Scholar]
  16. T. Zebbiche, Z. Youbi, Supersonic Plug Nozzle Design at High Temperature. Application for Air, AIAA-2006-0592, 44th Aerospace Sciences Meeting and Exhibit, 9−12 Jan. 2006, Reno Nevada, Reno Hilton, USA [Google Scholar]
  17. O. Abada, T. Zebbiche, A. Abdallah El-Hirtsi, Three-dimensional supersonic minimum length nozzle design at high temperature for arbitrary exit cross section, Arab. J. Sci. Eng. 39 (2014) 8233−8245 [Google Scholar]
  18. T. Zebbiche, Stagnation temperature effect on the Prandtl Meyer function, AIAA J. 45 (2007) 952−954 [CrossRef] [Google Scholar]
  19. T. Zebbiche, M. Boun-jad, Numerical quadrature for the Prandtl-Meyer function at high temperature with application for air, Thermophys. Aeromech. 19 (2012) 381−384 [CrossRef] [Google Scholar]
  20. Haynes W.M., CRC Handbook of Chemistry and Physics, 93th edition, CRC Press/Taylor and Francis, Boca Raton, 2012 [Google Scholar]
  21. G.J. Van Wylen, Fundamentals of classical thermodynamics, John Wiley and Sons, Inc. 1973 [Google Scholar]
  22. L.G. Newton, M. Randall, Thermodynamics, 2nd edition, McGraw-Hill Book Company, New York, 1961 [Google Scholar]
  23. B.J. McBride, S. Gordon, M.A. Reno, Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species, NASA TM 4513, 1993 [Google Scholar]
  24. J.C. Hunsaker, Equations, Tables and Charts for Compressible Flow, NACA TR 1135, 1953 [Google Scholar]
  25. A. Burcat, Thermochemical Data for Combustion Calculations, Combustion Chemistry, edited by W.C. Gardiner, Jr., Springer-Verlag, New York, 1984, Chap. 8 [Google Scholar]
  26. A. Burcat, B. McBride, Ideal Gas Thermodynamic Data for Compounds Used in Combustion and Air-Pollution, TAE 675, Technion Israel Institute of Technology, Haifa, Israel, 1992 [Google Scholar]
  27. J. Chao, R.C. Wilhoit, B.J. Zwolinski, Ideal Gas Thermodynamic Properties of Ethane and Propane, J. Phys. Chem. Ref. Data 2 (1973) 427−437 [Google Scholar]
  28. R. Comolet, Mécanique Expérimentale des Fluides. Statique et Dynamique des Fluides Non Visqueux, 3rd edition, Masson, 1979, Tome 1 [Google Scholar]
  29. H. Shapiro, M. Moran, Fundamentals of Engineering Thermodynamics, John Wiley and Sons Ltd, England, 2006 [Google Scholar]
  30. A. Raltson, A. Rabinowitz, A First Course in Numerical Analysis, McGraw Hill Book Company, 1985 [Google Scholar]
  31. B. Démidovitch, I. Maron, Éléments de calcul numérique, Editions MIR, Moscow, Russia, 1987 [Google Scholar]
  32. J.D.JR. Anderson, Modern Compressible Flow With Historical Perspective, 2nd edition, McGraw-Hill Book Company, New York, USA, 1982 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.