Open Access
Issue
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 214
Number of page(s) 5
DOI https://doi.org/10.1051/meca/2016037
Published online 17 February 2017
  1. G.W. Milton, N. Phan-Thien, New bounds on effective elastic moduli of two-component materials, Proc. Royal Soc. London. Series A 380 (1982) 305–331 [CrossRef] [Google Scholar]
  2. J. Widjajakusuma, B. Biswal, R. Hilfer, Quantitative prediction of effective material properties of heterogeneous media, Comput. Mater. Sci. 16 (1999) 70–75 [CrossRef] [Google Scholar]
  3. Z. Hashin, S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mecha. Phys. Solids 10 (1962) 335–342 [CrossRef] [MathSciNet] [Google Scholar]
  4. J.R. Willis, Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids 2 (1977) 185–202 [CrossRef] [Google Scholar]
  5. Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals, J. Mech. Phys. Solids 10 (1962) 343–352 [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids 38 (1990) 813–841 [CrossRef] [Google Scholar]
  7. M. Ostoja-Starzewski, Material spatial randomness: From statistical to representative volume element, Probabilistic Eng. Mech. 21 (2006) 112–132 [CrossRef] [Google Scholar]
  8. S. Brisard, K. Sab, L. Dormieux, New boundary conditions for the computation of the apparent stiffness of statistical volume elements, J. Mech. Phys. Solids 61 (2013) 2638–2658 [CrossRef] [Google Scholar]
  9. J. Korringa, Theory of elastic constants of heterogeneous media, J. Math. Phys. 14 (1973) 509–513 [CrossRef] [Google Scholar]
  10. R. Zeller, P.H. Dederichs, Elastic constants of polycrystals, Phys. Status Solidi B 55 (1973) 831–842 [CrossRef] [Google Scholar]
  11. E. Kröner, On the physics and mathematics of self-stresses. In: Topics in Applied Continuum Mechanics, edited by J.L. Zeman, F. Ziegler, Springer Verlag Wien, 1974, pp. 22–38 [Google Scholar]
  12. T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct. 40 (2003) 3647–3679 [CrossRef] [Google Scholar]
  13. P. Ponte Castañeda, J.R. Willis, The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids 43 (1995) 1919–1951 [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Torquato, Effective stiffness tensor of composite media–I, Exact series expansions, J. Mech. Phys. Solids 45 (1997) 1421–1448 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.