Open Access
Issue
Mechanics & Industry
Volume 18, Number 3, 2017
Article Number 306
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2016046
Published online 24 April 2017
  1. F. Wittmann,Structure of concrete with respect to crack formation, Fracture Mechanics of Concrete, Elsevier Science Publishers, 1983 [Google Scholar]
  2. F. Gatuingt, L. Snozzi, J.-F. Molinari, Numerical determination of the tensile response and the dissipated fracture energy of concrete: role of the mesostructure and influence of the loading rate, Int. J. Num. Anal. Methods Geomechanics 3 (2013) 3112–3130 [CrossRef] [Google Scholar]
  3. R.R. Pedersen, A. Simone, L.J. Sluys, Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete, Cem. Concr. Res. 50 (2013) 74–87 [CrossRef] [Google Scholar]
  4. B. Larbi,Caractérisation du transport diffusif dans les matériaux cimentaires: influence de la microstructure dans les mortiers, Ph.D. thesis, Université Paris-Est, 2013 [Google Scholar]
  5. Y. Hao, H. Hao, X.H. Zhang, Numerical analysis of concrete material properties at high strain rate under direct tension, Int. J. Impact Eng. 39 (2012) 51–62 [CrossRef] [Google Scholar]
  6. X.Q. Zhou, H. Hao, Mesoscale modelling of concrete tensile failure mechanism at high strain rates, Comput. Struct. 86 (2008) 2013–2026 [CrossRef] [Google Scholar]
  7. S. Häfner, S. Eckardt, T. Luther, C. Könke, Mesoscale modeling of concrete: Geometry and numerics, Comput. Struct. 84 (2006) 450–461 [CrossRef] [Google Scholar]
  8. G. Mollon, J. Zhao, 3d generation of realistic granular samples based on random fields theory and fourier shape descriptors, Comput Methods Appl. Mech. Eng. 279 (2014) 46–65 [CrossRef] [Google Scholar]
  9. S. Siiriä, J. Yliruusi, Particle packing simulations based on newtonian mechanics,Powder Technol. 174 (2007) 82–92 [CrossRef] [Google Scholar]
  10. P. Stroeven, M. Stroeven, Assessment of packing characteristics by computer simulation, Cem. Concr. Res. 29 (1999) 1201–1206 [CrossRef] [Google Scholar]
  11. B.D. Lubachevsky, F.H. Stillinger, Geometric properties of random disk packings, J. Stat. Phys. 60 (1990) 561–583 [CrossRef] [Google Scholar]
  12. R.M. Kadushnikov, E.Y. Nurkanov, Investigation of the density characteristics of three-dimensional stochastic packs of spherical particles using a computer model,. Powder Metall Metal Ceramics 40 (2001) 229–235 [CrossRef] [Google Scholar]
  13. J.-F. Jerier, D. Imbault, F.V. Donze, P. Doremus, A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse sphere packing,Granular Matter 11 (2009) 43–52 [CrossRef] [Google Scholar]
  14. L. Cui, C. O’Sullivan, Analysis of a triangulation based approach for specimen generation for discrete element simulations,Granular Matter 5 (2003) 135–145 [CrossRef] [Google Scholar]
  15. M. Briffaut, F. Benboudjema, C. Laborderie, J.-M. Torrenti, Creep consideration effect on meso-scale modeling of concrete hydration process and consequences on the mechanical behavior, J. Eng. Mech. 139 (2013) 1808–1817 [CrossRef] [Google Scholar]
  16. L. Snozzi, A. Caballero, J.-F. Molinari, Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading, Cem. Concr. Res. 41 (2011) 1130–1142 [CrossRef] [Google Scholar]
  17. G. Cusatis, Z. Bažant, L. Cedolin, Confinement-shear lattice csl model for fracture propagation in concrete, Comput. Meth. Appl. Mech. Eng. 195 (2006) 7154–7171 [CrossRef] [Google Scholar]
  18. Y. Benveniste, A new approach to the application of mori-tanaka’s theory in composite materials, Mech. Mater. 6 (1987) 147–15 [CrossRef] [Google Scholar]
  19. E.L. Hinrichsen, J. Feder, T. Jøssang, Geometry of random sequential adsorption, J. Stat. Phys. 44 (1986) 793–827 [CrossRef] [Google Scholar]
  20. F.L. Román, J.A. White, S. Velasco, Probability distribution function for the random sequential adsorption of hard-disks,Physica A: Statistical Mechanics and its Applications 233 (1996) 283–292 [CrossRef] [Google Scholar]
  21. M. Manciu, E. Ruckenstein, Estimation of the available surface and the jamming coverage in the random sequential adsorption of a binary mixture of disks,Colloids and Surfaces A: Physicochemical and Engineering Aspects 232 (2004) 1–10 [CrossRef] [Google Scholar]
  22. J.X. Liu, S.C. Deng, J. Zhang, N.G. Liang, Lattice type of fracture model for concrete, Theoretical Appl. Fract. Mech. 48 (2007) 269–284 [CrossRef] [Google Scholar]
  23. L. Snozzi, F. Gatuingt, J.-F. Molinari, A meso-mechanical model for concrete under dynamic tensile and compressive loading, Int. J. Fract. 17 (2012) 179–194 [CrossRef] [Google Scholar]
  24. A. Gangnant, S. Morel, C. La Borderie, J. Saliba, Modélisation de la rupture quasifragile du béton à l’échelle mésoscopique, InRencontres Universitaires de Génie Civil, Bayonne, France, may 2015. [Google Scholar]
  25. B.D. Ripley, Tests of randomness’ for spatial point patterns,Journal of the Royal Statistical Society. Series B (Methodological), 1979, pp. 368–374 [Google Scholar]
  26. B.D. Ripley,Spatial statistics, John Wiley & Sons, Vol. 575, 1981 [Google Scholar]
  27. D. Stoyan, H. Stoyan,Fractals, random shapes, and point fields: methods of geometrical statistics, Wiley Chichester, 1994 [Google Scholar]
  28. P.M. Dixon, Ripley’s k function,Encyclopedia of environmetrics, 2002 [Google Scholar]
  29. D. Grégoire, L. Rojas-Solano, V. Lefort, P. Grassl, G. Pijaudier-Cabot, Size and boundary effects during failure in quasi-brittle materials: Experimental and numerical investigations,Procedia Materials Science, 3 (2014) 1269–1278 20th European Conference on Fracture [Google Scholar]
  30. Z.P. Bazant, G. Pijaudier-Cabot, Nonlocal continuum damage, localization instability and convergence, J. Appl. Mech. 55 (1988) 287–293 [CrossRef] [Google Scholar]
  31. A. Pandolfi, M. Ortiz, An efficient adaptive procedure for three-dimensional fragmentation simulations,Engineering with Computers 18 (2002) 148–159 [CrossRef] [Google Scholar]
  32. K.D. Papoulia, C-H. Sam, S.A. Vavasis, Time continuity in cohesive finite element modeling, Int. J. Num. Meth. Eng. 58 (2003) 79–701 [CrossRef] [Google Scholar]
  33. J.-F. Molinari, G. Gazonas, R. Raghupathy, A. Rusinek, F. Zhou, The cohesive element approach to dynamic fragmentation: the question of energy convergence, Int. J. Num. Meth. Eng. 69 (2007) 484–503 [CrossRef] [Google Scholar]
  34. LSMS, Akantu, 2012 [Google Scholar]
  35. G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials, Int. J. Solids Struct. 33 (1996) 2899–2938 [CrossRef] [Google Scholar]
  36. O. Miller, L. Freund, A. Needleman, Modeling and simulation of dynamic fragmentation in brittle materials,Int. J. Fract. 96 (1999) 101–125 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.