Open Access
Mechanics & Industry
Volume 18, Number 3, 2017
Article Number 305
Number of page(s) 7
Published online 24 April 2017
  1. N. Martaj, P. Rochelle, L. Grosu, R. Bennacer, S. Savarese, Moteur Stirling à faible différence de températures (LTD): confrontation simulations numériques et expérimentation, Congrès SFT, 3-6 juin 2008, Toulouse, 729–735 [Google Scholar]
  2. I. Urieli, D.M. Berchowitz, Stirling Cycle Machine Analysis, Adam Hilger LTD, Bristol, 1982 [Google Scholar]
  3. G.T. Reader, C. Hooper, Les machines Stirling, E & F.N. SPON, New Fetter Lane, London, 1983 [Google Scholar]
  4. P. Nika, F. Lanzetta, Développement d’une machine frigorifique Stirling de petite taille, adaptée à des niveaux thermiques modérés, Journal de physique 5 (1995) 835–861 [CrossRef] [EDP Sciences] [Google Scholar]
  5. J.R. Senft, Theoretical limits on the performance of Stirling engines, Int. J. Energy Res. (1998) 991–1000 [Google Scholar]
  6. C.H. Cheng, Y.J. Yu, Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism, Renew. Energy (2010) 2590–2601 [Google Scholar]
  7. R. Gheith, F. Aloui, M. Tazerout, S. Ben Nasrallah, Experimental investigations of a gamma Stirling engine, Int. J. Energy Res. 36 (2012) 1175–1182 [CrossRef] [Google Scholar]
  8. B. Kongtragool, S. Wongwises, Performance of low-temperature differential Stirling Engines, Renew. Energy 32 (2007) 547–566 [CrossRef] [Google Scholar]
  9. Der Minassians, A Stirling engine for low-temperature solar-thermal-electric power generation, University of California, Ph.D. thesis, Berkeley, 2007 [Google Scholar]
  10. M. Feidt, K. Lesaos, M. Costea, S.Petrescu, Optimal allocation of HEX inventory associated with fixed power output or fixed heat transfer rate input, Int. J. Appl. Thermodyn. 5 (2002) 25–36 [Google Scholar]
  11. B. Kongtragool, S. Wongwises, Investigation on power output of the gamma configuration low temperature differential Stirling engines, Renew. Energy30 (2005) 465–476 [Google Scholar]
  12. A. Robson, Development of a computer model to simulate a low temperature differential Ringbom Stirling engine, Thermo- and GFD modelling of Stirling machines, Proceedings 12th International Stirling Engine Conference, Durham, 2005, pp. 350–357 [Google Scholar]
  13. P. Rochelle, L. Grosu, Analytical solutions and optimization of the exoirreversible Schmidt cycle with imperfect regeneration for the 3 classical types of Stirling engine, Oil Gas Sci. Technol. 66 (2011) 747–758 [CrossRef] [EDP Sciences] [Google Scholar]
  14. A.J. Organ, The Regenerator and the Stirling Engine, Wiley, 1997 [Google Scholar]
  15. S.K. Andersen, H. Carlsen, Per Grove Thomsen. Preliminary results from simulations of temperature oscillations in Stirling engine regenerator matrices, Energy(2005) 1371–1383 [Google Scholar]
  16. I. Tlili, Y. Timoumi, S. Ben Nasrallah, Thermodynamic analysis of Stirling heat engine with regenerative losses and internal irreversibilities, Int. J. Engine Res. (2007) 45–56 [Google Scholar]
  17. F. Wu, L. Chen, C. Wu, F. Sun, Optimum performance of irreversible Stirling engine with imperfect regeneration, Energy Convers. Manage. 8 (1998) 727–732 [Google Scholar]
  18. M.B. Ibrahim, Z. Zhang, R. Wei, T.W. Simon, Gedeon D. A 2-D CFD model of oscillatory flow with jets impinging on a random wire regenerator matrix, IEEE, 2004, pp. 511–517, ISBN 0-7803-7296-4 [Google Scholar]
  19. J.T. Wang, J. Chen, Influence of several irreversible losses on the performance of a ferroelectric Stirling refrigeration-cycle, Appl. Energy (2002) 495–511 [Google Scholar]
  20. W.M. Clearman, J.S. Cha, S.M. Ghiaasiaan, C.S. Kirkconnell, Anisotropic steady-flow hydrodynamic parameters of microporous media applied to pulse tube and Stirling cryocooler regenerators, Cryogenics (2008) 112–121 [Google Scholar]
  21. E. Ataera, H. Karabulut, Thermodynamic analysis of the V-type Stirling-cycle refrigerator, Int. J. Refrigeration (2005) 183–189 [Google Scholar]
  22. L.G. Chen, F.R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers, New York, 2004 [Google Scholar]
  23. L. Grosu, P. Rochelle, N. Martaj, An engineer-oriented optimization of Stirling engine cycle with Finite-size finite-speed of revolution thermodynamics, Int. J. Exergy 2 (2012) 191–204 [CrossRef] [Google Scholar]
  24. L. Grosu, S. Petrescu, C. Dobre, P. Rochelle, Stirling refrigerating machine. Confrontation of Direct and Finite Physical Dimensions Thermodynamics Methods to Experiments, Int. J. Energy Environ. Econ. 3 (2012) 195–207 [Google Scholar]
  25. S. Petrescu, M. Costea, C. Harman, T. Florea, Application of the Direct Method to irreversible Stirling cycles with finite speed, Int. J. Energy Res. 26 (2002) 589–609 [CrossRef] [Google Scholar]
  26. M.H. Ahmadi, A.H. Mohammadi, Dehghani S. Evaluation of the maximized power of a regenerative endoreversible Stirling cycle uising the thermodynamic analysis, Energy Convers. Manage. (2013) 561–570 [Google Scholar]
  27. N. Martaj, L. Grosu, P. Rochelle, A. Mathieu, M. Feidt, Simulation of a Stirling engine used by a micro solar power plant: 0-D modelling, comparison with 1-D modelling, Environ. Eng. Manage. J. (under press) [Google Scholar]
  28. S.K. Andersen, H. Carlsen, Per Grove Thomsen, Preliminary results from simulations of temperature oscillations in Stirling engine regenerator matrices, Energy (2005) 1–13 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.