Free Access
Issue
Mechanics & Industry
Volume 18, Number 3, 2017
Article Number 301
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2016045
Published online 20 March 2017
  1. E. Markiewicz, P. Ducrocq, P. Drazetic, G. Haugou, T. Fourmentraux, J.Y. Berard, Material behavior law identification for the various zones of the spot-weld under quasi-static loadings, Int. J. Mater. Product Technol. 16 (2001) 484–509 [CrossRef] [Google Scholar]
  2. B. Langrand, E. Markiewicz, Strain-rate dependence in spot welds: Non-linear behavior and failure in pure and combined modes I/II, Int. J. Impact Eng. 37 (2010) 792–805 [CrossRef] [Google Scholar]
  3. T. Wang, Modelling of welded thin-walled aluminium structures, Ph.D. thesis, NTNU, 2006 [Google Scholar]
  4. F. Labesse-Jied, B. Lebrun, E. Petitpas, J.L. Robert, Multiaxial fatigue assessment of welded structures by local approach, Proceedings of the 6th Int. Conference on Biaxial/Multiaxial Fatigue and Fracture., Lisbon, 2001, Editor: M. De Freitas, 81–89 [Google Scholar]
  5. T.K. Chan, R.F.D Porter Goff, Welded aluminium alloy connections: test results and BS8118, Thin-Walled Structures 36 (2000) 265–287 [CrossRef] [Google Scholar]
  6. H.G. Hildrum, Stiffened aluminium plates subjected to impact loading, Ph.D. thesis, NTNU, 2002 [Google Scholar]
  7. P. Gaudreault, A. Bouamoul, R. Durocher, B. St-Jean, Finite element modeling of light armoured vehicle welds heat affected zone subjected to anti-vehicular blast landmine loading, a summary of the numerical model and field experiment, Proceedings of the 22nd Int. Symposium on Ballistics, Vancouver, BC, Canada, 2005 [Google Scholar]
  8. B. Gailly, Étude du comportement dynamique et de la rupture de trois aciers à blindage, Ph.D. thesis, Mines de Paris, 1996 [Google Scholar]
  9. P. Chevrier, Mécanique et mésomécanique de l’écaillage essais expérimentaux et critères de rupture. Étude d’un alliage d’aluminium et d’un acier à blindage, Ph.D. thesis, Université de Metz, 1998 [Google Scholar]
  10. NF EN ISO 643, Aciers - Détermination micrographique de la grosseur de grain apparent, Avril 2013 [Google Scholar]
  11. C. Albertini, M. Montagnani, Testing techniques based on the split Hopkinson bar, Mechanical Properties at High Strain Rates 21 (1974) 22–32 [Google Scholar]
  12. H. Kolsky, Stress waves in solids, Dover Publications Inc., New York, 1963 [Google Scholar]
  13. O.S. Hopperstad, T. Borvik, M. Langseth, K. Labibes, C. Albertini, On the influence of stress triaxiality and strain rate on the behavior of a structural steel. Part I. Experiments, Eur. J. Mech. A/Solids 22 (2003) 1–13 [CrossRef] [Google Scholar]
  14. T. Borvik, O.S. Hopperstad, T. Berstad, On the influence of stress triaxiality and strain rate on the behavior of a structural steel. Part II. Numerical study, Eur. J. Mech. A/Solids 22 (2003) 15–32 [CrossRef] [Google Scholar]
  15. M. Alves, N. Jones, Influence of hydrostatic stress on failure of axisymmetric notched specimens, J. Mech. Phys. Solids 47 (1999) 643–667 [CrossRef] [Google Scholar]
  16. P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw-Hill, 1952 [Google Scholar]
  17. G. Le Roy, J.D. Embury, G. Edward, M. F. Ashby, A model of ductile fracture based on the nucleation and growth of voids, Acta Metall. 29 (1981) 1509–1522 [CrossRef] [Google Scholar]
  18. G. Murry, Traitements thermiques dans la masse des aciers. Partie 1, Techniques de l’ingénieur, 2000 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.