Open Access
Mechanics & Industry
Volume 18, Number 4, 2017
Article Number 413
Number of page(s) 11
Published online 28 August 2017
  1. M. Hammadi, J.Y. Choley, F. Mhenni, A multi-agent methodology for multi-level modeling of mechatronic systems, Adv. Eng. Inform. 28 (2014) 208–217 [CrossRef] [Google Scholar]
  2. M. Hammadi, J.Y. Choley, O. Penas, A. Riviere, J. Louati, M. Haddar, A new multi-criteria indicator for mechatronic system performance evaluation in preliminary design level, in: 13th International Workshop on Mechatonics, 9th France–Japan and 7th Europe–Asia Congress on Research and Education in Mechatronics (REM), 2012, pp. 409–416 [Google Scholar]
  3. M. Hammadi, J.Y. Choley, Parametric compact modelling of dynamical systems using meshfree method with multi-port technique, Int. J. Dyn. Syst. Diff. Eq. 5 (2015) 206–219 [Google Scholar]
  4. P. Lisandrin, M. van Tooren, High-order finite elements reduced models for modal analysis of stiffened panels, Int. J. Mech. Mater. Des. 3 (2006) 111–127 [CrossRef] [Google Scholar]
  5. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Pre-designing of a mechatronic system using an analytical approach with dymola, J. Theor. Appl. Mech. 53 (2015) 697–710 [CrossRef] [Google Scholar]
  6. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Pre dimensioning of the dynamic properties of the wind turbine system using analytical approach, in: Proceedings of the Sixth Conference on Design and Modeling of Mechanical Systems (CMSM ’2015), Hammamet, Tunisia, 2015 [Google Scholar]
  7. M. Hammadi, J.Y. Choley, O. Penas, A. Riviere, A multidisciplinary approach for modelling and optimization of road electric vehicles in conceptual design level, in: IEEE International Conference on Electrical Systems for Aircraft, Railway and Ship Propulsion, Aachen, Germany, 2012 [Google Scholar]
  8. G. Rzevski, On conceptual design of intelligent mechatronic systems, Mechatronics 13 (2003) 1029–1044 [CrossRef] [Google Scholar]
  9. L. Wang, W. Shen, H. Xie, J. Neelamkavil, A. Pardasani, Collaborative conceptual design – state of the art and future trends, Comput. Aided Des. 34 (2012) 981–996 [CrossRef] [Google Scholar]
  10. T. Habib, H. Komoto, Comparative analysis of design concepts of mechatronics systems with a CAD tool for system architecting, Mechatronics 24 (2014) 788–804 [CrossRef] [Google Scholar]
  11. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Analytical approach for the integrated preliminary analysis of mechatronic systems subjected to vibration, Mecatronics, in: 10th France–Japan/8th Europe–Asia Congress, Tokyo, Japan, 2014 [Google Scholar]
  12. C. Chantharasenawong, P. Jongpradist, S. Laoharatchapruek, Preliminary design of 1.5-MW modular wind turbine tower, in: The 2nd TSME International Conference on Mechanical Engineering, Krabi, Thailad, 2011 [Google Scholar]
  13. A. Arbaoui, M. Asbik, Constraints based decision support for site-specific preliminary design of wind turbines, Energy Power Eng. 2 (2010) 161–170 [CrossRef] [Google Scholar]
  14. S.M. Jafri, A. Eltaher, P. Jukes, Dynamics of offshore wind turbines, in: Proceedings of the Twenty-first International Offshore and Polar Engineering Conference, ISOPE, Hawaii, USA, 2011, pp. 19–24 [Google Scholar]
  15. S.M. Avila, M.A.M. Shzu, M.W. Pereira, L.S. Santos, M.V.G. Morais, Z.J.G. Prado, Numerical modeling of the dynamic behavior of a wind turbine tower, in: 11th International Conference Vibration Problems, Lisbon, Portugal, 2013 [Google Scholar]
  16. A.A. Razak, Overview of wind turbine modeling in Modelica, Int. J. Eng. Technol. 4 (2012) 551–553 [CrossRef] [Google Scholar]
  17. A.B. Dynasym, Dymola dynamic modeling laboratory user’s manual, 2006. Available from: [Google Scholar]
  18. Modelica Association, Modelica – A Unified Object-Oriented Language for Systems Modeling v3. 3. Standard Specification, 2012 [Google Scholar]
  19. M. Strobel, F. Vorpahl, C. Hillmann, X. Gu, A. Zuga, U. Wihlfahrt, The one wind modelica library for offshore wind turbines implementation and first results, in: Proceedings 8th Modelica Conference, Dresden, Germany, 2011 [Google Scholar]
  20. M. Brommundt, M. Muskulus, M. Strach, M. Strobel, F. Vorpahl, Experiences with object-oriented and equation based modeling of a floating support structure for wind turbines in Modelica, in: Proceedings of the2012 Winter Simulation Conference, Berlin, Germany, 2012 [Google Scholar]
  21. R. Samlaus, P. Fritzson, A. Zuga, M. Strobel, C. Hillmann, Modelica code generation with polymorphic arrays and records used in wind turbine modeling, in: Proceedings of the 9th International Modelica Conference, Munich, Germany, 2012 [Google Scholar]
  22. C. Rickert, Object-oriented modeling of a wind power plant in modelica and analysis of loads on blade bearings, Master’s thesis, School of Industrial Engineering and Management (ITM), Energy Technology, Brinellvägen, Stockholm, 2012 [Google Scholar]
  23. D.V. Bambill, S.J. Escanes, C.A. Rossit, Forced vibrations of a clamped-free beam with a mass at the free end with an external periodic disturbance acting on the mass with applications in ships structures, Ocean Eng. 30 (2003) 1065–1077 [CrossRef] [Google Scholar]
  24. P. Laura, J. Pombo, E. Susemihl, A note on the vibrations of a clamped-free beam with a mass at the free end, J. Sound Vib. 37 (1974) 161–168 [CrossRef] [Google Scholar]
  25. J. Arrigan, V. Pakrashi, B. Basu, S. Nagarajaiah, Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers, Struct. Control Health Monit. 18 (2011) 840–851 [CrossRef] [Google Scholar]
  26. H. Robert, H. Erich, S. Herman, Large wind turbines: design and economics, John Wiley & Sons, Inc., London, 2000 [Google Scholar]
  27. P.J. Murtagh, B. Basu, B.M. Broderick, Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading, Eng. Struct. 27 (2005) 1209–1219 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.