Open Access
Mechanics & Industry
Volume 18, Number 5, 2017
Article Number 507
Number of page(s) 11
Published online 25 October 2017
  1. T.C. Wagner, A general decomposition methodology for optimal system design, Thesis, University of Michigan, 1993 [Google Scholar]
  2. J. Plume, J. Mitchell, Collaborative design using a shared IFC building model-learning from experience, Autom. Constr. 16 (2007) 28–36 [CrossRef] [Google Scholar]
  3. J. Sobieszczanski-Sobieski, R.T. Haftka, Multidisciplinary aerospace design optimization: survey of recent developments, Struct. Optim. 14 (1997) 1–23 [Google Scholar]
  4. M. Hammadi, J.Y. Choley, O. Penas, J. Louati, A. Rivière, M. Haddar, Layout optimization of power modules using a sequentially coupled approach, Int. J. Simul. Model. 10 (2011) 122–132 [CrossRef] [Google Scholar]
  5. A. Guizani, M. Hammadi, J.Y. Choley, T. Soriano, M.S. Abbes, M. Haddar, Multidisciplinary optimization of mechatronic systems: application to an electric vehicle, Mechatron. Syst.: Theor. Appl. (2014) 1–14 [Google Scholar]
  6. M. Wooldridge, Agent-based software engineering, IEE Proc. Softw. IET 144 (1997) 26–37 [CrossRef] [Google Scholar]
  7. S. Park, V. Sugumaran, Designing multi-agent systems: a framework and application, Expert Syst. Appl. 28 (2005) 259–271 [CrossRef] [Google Scholar]
  8. D. Villanueva, G. Picard, R. Le Riche, R.T. Haftka, Optimisation multi-agent par partitionnement adaptatif de l'espace de conception, 20èmes Journées Francophones sur les Systèmes Multi-Agents JFSMA, 2012 [Google Scholar]
  9. Q. Hao, W. Shen, S.W. Park, J.K. Lee, Z. Zhang, B.C. Shin, An agent-based e-engineering services framework for engineering design and optimization, Innov. Appl. Artif. Intell. (2004) 1016–1022 [CrossRef] [Google Scholar]
  10. G. La Rocca, M.J. van Tooren, Knowledge-based engineering to support aircraft multidisciplinary design and optimization, Proc. Inst. Mech. Eng. G: J. Aerosp. Eng. 224 (2010) 1041–1055 [CrossRef] [Google Scholar]
  11. Z. Ren, F. Yang, N. Bouchlaghem, C. Anumba, Multi-disciplinary collaborative building design—a comparative study between multi-agent systems and multi-disciplinary optimisation approaches, Autom. Constr. 20 (2011) 537–549 [CrossRef] [Google Scholar]
  12. D.J. Pate, J. Gray, B.J. German, A graph theoretic approach to problem formulation for multidisciplinary design analysis and optimization, Struct. Multidiscip. Optim. 49 (2014) 743–760 [CrossRef] [Google Scholar]
  13. E. Ghotbi, Bi-and multi-level game theoretic approaches in mechanical design, Thesis, University of Wisconsin-Milwaukee, 2013 [Google Scholar]
  14. S. Tosserams, L. Etman, J.E. Rooda, Augmented lagrangian coordination for distributed optimal design in MDO, Int. J. Numer. Methods Eng. 73 (2008) 1885–1910 [CrossRef] [Google Scholar]
  15. S. Friedenthal, A. Moore, R. Steiner, A practical guide to SysML: the systems modelling language, Morgan Kaufmann, 2014 [Google Scholar]
  16. P. Fritzson, Principles of object-oriented modelling and simulation with Modelica 2.1, John Wiley and Sons, 2010 [CrossRef] [Google Scholar]
  17. A. Guizani, M. Hammadi, J.Y. Choley, T. Soriano, M.S. Abbes, M. Haddar, Electric vehicle design, modelling and optimization, Mech. Ind. 17 (2016) 405 [CrossRef] [EDP Sciences] [Google Scholar]
  18. T.J. Barlow, S. Latham, I. McCrae, P. Boulter, A reference book of driving cycles for use in the measurement of road vehicle emissions, 2009 [Google Scholar]
  19. Telecom Italia, JAVA Agent Development Framework, available from [Google Scholar]
  20. G.E. Box, K. Wilson, On the experimental attainment of optimum conditions, J. R. Stat. Soc. Ser. B: Methodol. 13 (1951) 1–45 [Google Scholar]
  21. M.J. Powell, Radial basis functions for multivariable interpolation: a review, Algorithms for approximation, 1987, Clarendon Press, 143–167 [Google Scholar]
  22. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi objective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.