Issue
Mechanics & Industry
Volume 18, Number 7, 2017
STANKIN: Innovative manufacturing methods, measurements and materials
Article Number 714
Number of page(s) 6
DOI https://doi.org/10.1051/meca/2017059
Published online 30 December 2017
  1. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia 117 (2016) 371–392 [CrossRef] [Google Scholar]
  2. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties, Prog. Mater. Sci. 74 (2015) 401–477 [CrossRef] [Google Scholar]
  3. I. Smurov, M. Doubenskaia, S. Grigoriev, A. Nazarov, Optical Monitoring in Laser Cladding of Ti6Al4V, J. Thermal Spray Technol. 21 (2012) 1357–1362 [CrossRef] [Google Scholar]
  4. B. Vayre, F. Vignat, F. Villeneuve, Metallic additive manufacturing: state-of-the-art review and prospects, Mechanics & Industry 13 (2012) 89–96 [CrossRef] [EDP Sciences] [Google Scholar]
  5. T.V. Tarasova, A.P. Nazarov, M.V. Prokof'ev, Effect of the regimes of selective laser melting on the structure and physicomechanical properties of cobalt-base superalloys, Phys. Metals Metall. 116 (2015) 601–605 [CrossRef] [Google Scholar]
  6. S.N. Grigoriev, T.V. Tarasova, Possibilities of the technology of additive production for making complex-shape parts and depositing functional coatings from metallic powders, Metal Sci. Heat Treatment 57 (2016) 579–584 [CrossRef] [Google Scholar]
  7. D.Q. Zhang, Z.H. Liu, Q.Z. Cai, J.H. Liu, C.K. Chua, Influence of Ni content on microstructure of W–Ni alloy produced by selective laser melting, Int. J. Refract. Metals Hard Mater. 45 (2014) 15–22 [CrossRef] [Google Scholar]
  8. E. Uhlmann, A. Bergmann, W. Gridin, Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting, Procedia CIRP 35 (2015) 8–15 [CrossRef] [Google Scholar]
  9. X.C. Wang, T. Laoui, J. Bonse, J.P. Kruth, B. Lauwers, L. Froyen, Direct selective laser sintering of hard metal powders: experimental study and simulation, Int. J. Adv. Manuf. Technol. 19 (2002) 351–357 [CrossRef] [Google Scholar]
  10. S.N. Grigoriev, A.A. Vereshchaka, Methodology of formation of multi-layered coatings for carbide cutting tools, Mechanics & Industry 17 (2014) 706 [CrossRef] [EDP Sciences] [Google Scholar]
  11. A.A. Vereschaka, A.S. Vereschaka, A.D.L. Batako, B.J. Mokritskii, A.Y. Aksenenko, N.N. Sitnikov, Improvement of structure and quality of nanoscale multilayered composite coatings, deposited by filtered cathodic vacuum arc deposition method, Nanomater. Nanotechnol. 7 (2017) 13 [CrossRef] [Google Scholar]
  12. A.A. Vereschaka, B.Y. Mokritskii, N.N. Sitnikov, G.V. Oganyan, A.Y. Aksenenko, Study of mechanism of failure and wear of multi-layered composite nano-structured coating based on system Ti-TiN-(ZrNbTi)N deposited on carbide substrates, J. Nano Res. 45 (2017) 110–123 [CrossRef] [Google Scholar]
  13. A.A. Vereschaka, J. Prilukova, A.S. Vereshchaka, J. Bublikov, A. Aksenenko, Control of temperature in cutting zone in machining of alloyed case-hardened steels by applying a ceramic tool with wear-resistant coatings, Mater. Sci. Forum 857 (2016) 199–205 [CrossRef] [Google Scholar]
  14. H. Abdel-Aal, M. El Mansori, Wear of WC–Co inserts in dry high-speed machining of micron-sized particle aeronautical grade near β titanium alloy, Mechanics & Industry 15 (2014) 413–426 [CrossRef] [EDP Sciences] [Google Scholar]
  15. Yu.V. Lakhotkin, V.V. Dushik, V.P. Kuz'min, N.V. Rozhanskii, Nanostructured hard coatings: the key to safe operation of equipment in extreme conditions, Prot. Metals Phys. Chem. Surf. 7 (2015) 1165–1169 [CrossRef] [Google Scholar]
  16. V.V. Dushik, Yu.V. Lakhotkin, V.P. Kuzmin, N.V. Rozhanskii, The corrosion behavior of hard W-C system chemical vapor deposition layers in HCl and H2S aqueous solutions, Prot. Metals Phys. Chem. Surf. 7 (2016) 1153–1156 [CrossRef] [Google Scholar]
  17. T. Laoui, L. Froyen, J.P. Kruth, Effect of mechanical alloying on selective laser sintering of WC–9Co powder, Powder Metall. 42 (1999) 203–205 [Google Scholar]
  18. R.S. Khmyrov, V.A. Safronov, A.V. Gusarov, Obtaining crack-free WC–Co alloys by selective laser melting, Phys. Procedia 83 (2016) 874–881 [CrossRef] [Google Scholar]
  19. R.S. Khmyrov, V.A. Safronov, A.V. Gusarov, Synthesis of nanostructured WC–Co hardmetal by selective laser melting, Mater. Sci. Forum 834 (2015) 77–83 [CrossRef] [Google Scholar]
  20. A.S. Kurlov, A.A. Rempel, Effect of sintering temperature on the phase composition and microhardness of WC-8 wt % Co cemented carbide, Inorg. Mater. 43 (2007) 602–607 [CrossRef] [Google Scholar]
  21. N. Al-Aqeeli, N. Saheb, T. Laoui, K. Mohammad, The synthesis of nanostructured WC-based hardmetals using mechanical alloying and their direct consolidation, J. Nanomater. 2014 (2014) 640750 [CrossRef] [Google Scholar]
  22. A. Bondar, N. Bochvar, T. Dobatkina, N. Krendelsberg, Carbon−Cobalt–Tungsteen: datasheet from Landolt-Bornstein group IV physical chemistry volume 11E2: “Refractory metal systems” in Springer Materials, Springer-Verlag Berlin Heidelberg, Berlin, 2005 [Google Scholar]
  23. T. Johansson, B. Uhrenius, Phase equilibria, isothermal reactions, and a thermodynamic study in the Co–W–C system at 1150 °C, Met. Sci. 12 (1978) 83–94 [CrossRef] [Google Scholar]
  24. E. Lugscheider, H. Reimann, R. Pankert, η-Carbides in Co–W–C and Fe–W–C alloys, Z. Metallkd. 73 (1982) 321–324 [Google Scholar]
  25. V.Z. Kublii, T. Ya. Velikanova, Ordering in the Carbide W2C and phase equilibria in the tungsten carbon system in the region of its existence, Powder Metall. Metal Ceram. 43 (2004) 630–644 (translated from Poroshk. Metall. 11/12 (2004) 101–116 [CrossRef] [Google Scholar]
  26. A. Inoue, Y. Harakawa, T. Masumoto, Nonequilibrium phase in melt-quenched Co–W–C alloys and their powder-forming tendency by comminution, Sci. Rep. Res. Inst. Tohoku Univ. A32 (1985) 297–308 [Google Scholar]
  27. E.V. Shelekhov, T.A. Sviridova, Programs for X-ray analysis of polycrystals, Metal Sci. Heat Treat. 42 (2000) 309–313 [CrossRef] [Google Scholar]
  28. S. Grazulis, D. Chateigner, R.T. Downs, A.T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography open database − an open-access collection of crystal structures, J. Appl. Cryst. 42 (2009) 726–729 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.