Free Access
Issue
Mechanics & Industry
Volume 19, Number 1, 2018
Article Number 103
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2018019
Published online 24 August 2018
  1. R. Barbedienne, O. Penas, J.-Y. Choley, A. Rivière, A. Warniez, F. Della Monica, Introduction of geometrical contraints modeling in SysML for mechatronic design, in: Mecatronics (MECATRONICS), 2014 10th France-Japan/8th Europe-Asia Congress on. IEEE, 2014, pp. 145–150 [CrossRef] [Google Scholar]
  2. M. Hammadi, J.Y. Choley, O. Penas, A. Riviere, J. Louati, M. Haddar, A new multi-criteria indicator for mechatronic system performance evaluation in preliminary design level, in: Mechatronics (MECATRONICS), 2012 9th France-Japan & 7th Europe-Asia Congress on and Research and Education in Mechatronics (REM), 2012 13th Int'l Workshop on. IEEE, 2012, pp. 409–416 [CrossRef] [Google Scholar]
  3. C. Zheng, J. Le Duigou, M. Bricogne, E. Dupont, B. Eynard, Interface model enabling decomposition method for architecture definition of mechatronic systems, Mechatronics 40 (2016) 194–207 [CrossRef] [Google Scholar]
  4. L. Wang, W. Shen, H. Xie, J. Neelamkavil, A. Pardasani, Collaborative conceptual design-state of the art and future trends, Comput. −Aided Des. 34 (2012) 981–996 [Google Scholar]
  5. H. Komoto, T. Tomiyama, A framework for computer-aided conceptual design and its application to system architecting of mechatronics products, Comput. −Aided Des. 44 (2012) 931–946 [Google Scholar]
  6. G. Rzevski, On conceptual design of intelligent mechatronic systems, Mechatronics 13 (2003) 1029–1044 [CrossRef] [Google Scholar]
  7. R. Scheidl, B. Winkler, Model relations between conceptual and detail design, Mechatronics 20 (2010) 842–849 [CrossRef] [Google Scholar]
  8. M. Hammadi, J.-Y. Choley, F. Mhenni, A multi-agent methodology for multi-level modeling of mechatronic systems, Adv. Eng. Inform. 28 (2014) 208–217 [CrossRef] [Google Scholar]
  9. T. Habib, H. Komoto, Comparative analysis of design concepts of mechatronics systems with a CAD tool for system architecting, Mechatronics 24 (2014) 788–804 [CrossRef] [Google Scholar]
  10. F.A. Salem, Mechatronics design of ball and beam system: education and research, Control Theory Inform. 3 (2013) 2224–5774 [Google Scholar]
  11. P. Mucci, R. Singh, Active vibration control of beam subjected to AM or FM disturbances, Noise Control Eng. 43 (1995) 159–171 [CrossRef] [Google Scholar]
  12. A. Buchacz, Dynamical flexibility of discrete-continuous vibrating mechatronic system, J. Achiev. Mater. Manuf. Eng. 28 (2008) 159–166 [Google Scholar]
  13. A. Buchacz, Characteristics of discrete-continuous flexibly vibrating mechatronic system, J. Achiev. Mater. Manuf. Eng. 28 (2008) 43–46 [Google Scholar]
  14. A. Buchacz, M. Płaczek, Selection of parameters of external electric circuit for control of dynamic flexibility of a mechatronic system, Solid State Phenom. 164 (2010) 323–326 [CrossRef] [Google Scholar]
  15. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Pre-designing of a mechatronic system using an analytical approach with dymola, J. Theor. Appl. Mech. 53 (2015) 697–710 [CrossRef] [Google Scholar]
  16. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Analytical approach for the integrated preliminary analysis of mechatronic systems subjected to vibration, in: Mecatronics (MECATRONICS), 2014 10th France-Japan/8th Europe-Asia Congress on. IEEE, 2014, pp. 151–155 [CrossRef] [Google Scholar]
  17. A.M. Veprik, V.I. Babtisky, Vibration protection of sensitive electronic equipment from harsh harmonic vibration, J. Sound Vib. 238 (2000) 19–30 [CrossRef] [Google Scholar]
  18. A.M. Veprik, Vibration protection of critical components of electronic equipment in harsh environmental conditions, J. Sound Vib. 259 (2003) 161–175 [CrossRef] [Google Scholar]
  19. S. Mishra, M. Pecht, T. Smith, I. McNee, R. Harris, Remaining life prediction of electronic products using life consumption monitoring approach, in: Proceedings of the European Microelectronics Packaging and Interconnection Symposium, 2002, pp. 136–142 [Google Scholar]
  20. S.S. Rao, Vibration of continuous systems, John Wiley & Sons, Hoboken, New Jersey, 2007, pp. 317–418 [Google Scholar]
  21. M.I. Sakri, P.V. Mohanram, Experimental investigations on board level electronic packages subjected to sinusoidal vibration loads, Int. J. Curr. Eng. Technol. 2 (2014) 427–431 [CrossRef] [Google Scholar]
  22. F. Schiavo, L. Vigano, G. Ferretti, Object-oriented modelling of flexible beams, Multibody Syst. Dyn. 15 (2006) 263–286 [CrossRef] [Google Scholar]
  23. M. S. Kozien, Analytical solutions of excited vibrations of a beam with application of distribution, Acta Phys. Pol. 123 (2013) 1029–1033 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.