Open Access
Mechanics & Industry
Volume 19, Number 1, 2018
Article Number 108
Number of page(s) 8
Published online 31 August 2018
  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In: D.A. Siginer, H.P. Wang, eds., Developments and applications of Non-Newtonian flows, ASME, New York, 1995, 99–105 [Google Scholar]
  2. J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf. 128 (2006) 240–250 [Google Scholar]
  3. N.S. Akbar, M. Raza, R. Ellahi, Interaction of nanoparticles for the peristaltic flow in an asymmetric channel with the induced magnetic field, Eur. Phys. J. Plus 129 (2014) 1–12 [CrossRef] [Google Scholar]
  4. E.H. Aly, A. Ebaid, Exact analytical solution for the peristaltic flow of nanofluids in an asymmetric channel with slip effect of the velocity, temperature and concentration, J. Mech. 30 (2014) 411–422 [CrossRef] [Google Scholar]
  5. A.H. Ebaid, H.E. Aly, Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: application to the cancer treatment, computational and mathematical methods in medicine, Math. Probl. Eng. (2013), doi:10.1155/2013/825376 [Google Scholar]
  6. K. Nowar, Peristaltic flow of a nanofluid under the effect of hall current and porous medium, mathematical problems in engineering, Math. Probl. Eng. (2014), doi:10.1155/2014/389581 [Google Scholar]
  7. S. Park, N.J. Kim, A study on the characteristics of carbon nanofluid for heat transfer enhancement of heat pipe, Renew. Energy 65 (2014) 123–129 [CrossRef] [Google Scholar]
  8. T. Shaafi, R. Velraj, Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel-soybean biodiesel blend fuel: combustion, engine performance and emissions, Renew. Energy 80 (2015) 655–663 [CrossRef] [Google Scholar]
  9. S. Akram, S. Nadeem, Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field, J. Magn. Magn. Mater. 358 (2014) 183–191 [CrossRef] [Google Scholar]
  10. N.S. Akbar, S. Nadeem, Endoscopic effects on peristaltic flow of a nanofluid, Commun. Theor. Phys. 56 (2011) 761 [CrossRef] [Google Scholar]
  11. M.G. Reddy, K.V. Reddy, Influence of joule heating on MHD peristaltic flow of a nanofluid with compliant walls, Proc. Eng. 127 (2015) 1002–1009 [CrossRef] [Google Scholar]
  12. N.S. Akbar, M. Raza, R. Ellahi, Influence of heat generation and heat flux on peristaltic flow with interacting nanoparticles, Eur. Phys. J. Plus 129 (2014) 185 [CrossRef] [Google Scholar]
  13. A. Zamzamian, M. KeyanpourRad, M. KianiNeyestani, M.T. Jamal-Abad, An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors, Renew. Energy 71 (2014) 658–664 [CrossRef] [Google Scholar]
  14. O.A. Bég, D. Tripathi, Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-Nano-engineering model, Proc. Ins. Mech. Eng. N: J. Nanoeng. Nanosyst. 225 (2011) 99–114 [Google Scholar]
  15. M. Nourani, N. Hamdami, J. Keramat, A. Moheb, M. Shahedi, Thermal behavior of paraffin-Nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity, Renew. Energy 88 (2016) 474–482 [CrossRef] [Google Scholar]
  16. N.S. Akbar, Endoscopic effects on the Peristaltic flow of Cu-water nanofluid, J. Comput. Theor. Nanosci. 11 (2014) 1150–1155 [CrossRef] [Google Scholar]
  17. P. Homayonifar, Y. Saboohi, B. Firoozabadi. Numerical simulation of Nano-carbon deposition in the thermal decomposition of methane, Int. J. Hydrog. Energy 33 (2008) 7027–7038 [CrossRef] [Google Scholar]
  18. S. Nadeem, A. Riaz, R. Ellahi, N.S. Akbar, Effects of heat and mass transfer on peristaltic flow of a nanofluid between eccentric cylinders, Appl. Nanosci. (2013), doi:10.1007/s13204-013-0225-x [Google Scholar]
  19. V.K. Narla, K.M. Prasad, J.V. Ramanamurthy, Peristaltic transport of Jeffrey nanofluid in curved channels, Proc. Eng. 127 (2015) 869–876 [CrossRef] [Google Scholar]
  20. S. Nadeem, E.N. Maraj, The mathematical analysis for peristaltic flow of nanofluid in a curved channel with compliant walls, Appl. Nanosci. (2012), doi:10.1007/s13204-012-0165-x [Google Scholar]
  21. E. Kaloudis, E. Papanicolaou, V. Belessiotis, Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model, Renew. Energy 97 (2016) 218–229 [CrossRef] [Google Scholar]
  22. G. Aaiza, I. Khan, S. Shafie, Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium, Nanoscale Res. Lett. 10 (2015) 490 [CrossRef] [PubMed] [Google Scholar]
  23. F.N. Sayed, V. Polshettiwar, Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides, Sci. Rep. 5 (2015) 9733 [CrossRef] [PubMed] [Google Scholar]
  24. M.M. Bhatti, A. Zeeshan, R. Ellahi, Electromagnetohydrodynamic (EMHD) peristaltic flow of solid particles in a third-grade fluid with heat transfer, Mech. Ind. 18 (2017) 314 [CrossRef] [Google Scholar]
  25. R. Ellahi, M. Hassan, A. Zeeshan, Shape effect of nanosize particles in Cu-H2O nanofluid on entropy generation, Int. J. Heat Mass Trans. 81 (2015) 449 [CrossRef] [Google Scholar]
  26. E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, J. Appl. Phys. 106 (2009) 014304 [CrossRef] [Google Scholar]
  27. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model, J. Nanoparticle Res. 6 (2004) 355–361 [CrossRef] [Google Scholar]
  28. R. Ellahi, M. Hassan, A. Zeeshan, Shape effects of spherical and nonspherical nanoparticles in mixed convection flow over a vertical stretching permeable sheet, Mech. Adv. Mater. Struct. (2016) 1232454, DOI:10.1080/15376494 [Google Scholar]
  29. A. Zeeshan, M. Hassan, R. Ellahi, M. Nawaz, Shape effect of nanosize particles in unsteady mixed convection flow of nanofluid over disk with entropy generation, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. (2016) 0954408916646139 [Google Scholar]
  30. E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, J. Appl. Phys. 106 (2009) 014304 [CrossRef] [Google Scholar]
  31. S. Nadeem, I. Shahzadi, Mathematical analysis for peristaltic flow of two phase nanofluid in a curved channel, Commun. Theor. Phys. 64 (2015) 547 [CrossRef] [Google Scholar]
  32. M.M. Bhatti, A. Zeeshan, R. Ellahi, N. Ijaz, Heat and mass transfer of two-phase flow with electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field, J. Mol. Liq. 230 (2017) 237–246 [CrossRef] [Google Scholar]
  33. S. Nadeem, A. Riaz, R. Ellahi, Peristaltic flow of a Jeffrey fluid in a rectangular duct having compliant walls, Chem. Ind. Chem. Eng. Q 19 (2013) 399–409 [CrossRef] [Google Scholar]
  34. P. Goswami, J. Chakraborty, A. Bandopadhyay, S. Chakraborty, Electrokinetically modulated peristaltic transport of power-law fluids, Microvasc. Res. 103 (2016) 41–54 [CrossRef] [Google Scholar]
  35. B.C. Liechty, B.W. Webb, R.D. Maynes, Convective heat transfer characteristics of electro-osmotically generated flow in microtubes at high wall potential, Int. J. Heat Mass Trans. 48 (2005) 2360–2371 [CrossRef] [Google Scholar]
  36. R. Ellahi, M. Hassan, A. Zeeshan, Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection, J. Chem. Eng. 11 (2016) 197–186 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.