Open Access
Issue |
Mechanics & Industry
Volume 19, Number 1, 2018
|
|
---|---|---|
Article Number | 109 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/meca/2018018 | |
Published online | 31 August 2018 |
- B.C.B. Brown, J.T.P. Yao, Fuzzy sets and structural engineering, ASME J. Appl. Mech. 109 (1983) 1211–1225 [Google Scholar]
- G.W. Housner et al., Structural control: past, present, and future, J. Eng. Mech. 123 (1997) 897–971 [Google Scholar]
- G. Kumar, A. Kumar, Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of the vibrations using magnetorheological dampers, Smart Mater. Struct. 26 (2017) 115013 [CrossRef] [Google Scholar]
- B.F.J. Spencer, S.J. Dyke, M.K. Sain, J.D. Carlson, Phenomenological model for magnetorheological dampers, J. Eng. Mech. 123 (1997) 230–238 [CrossRef] [Google Scholar]
- S.K. Sharma, A. Kumar, Ride performance of a high-speed rail vehicle using controlled semi-active suspension system, Smart Mater. Struct. 26 (2017) 055026 [CrossRef] [Google Scholar]
- L.M. Jansen, S.J. Dyke, Semiactive control strategies for MR dampers: comparative study, J. Eng. Mech. 126 (2000) 795–803 [CrossRef] [Google Scholar]
- S.J. Dyke, L.M. Jansen, Implications of control-structure interaction in scaled structural control system testing, Proc. IEEE 1 (1999) 2–7 [Google Scholar]
- S.J. Dyke, B.S. Jr, A comparison of semi-active control strategies for the MR damper, Intell. Inf. Syst. (1997) 580–584, https://doi.org/10.1109/IIS.1997.645424"\t"_blank"10.1109/IIS.1997.645424 [CrossRef] [Google Scholar]
- S.J. Dyke, B.F. Spencer, M.K. Sain, J.D. Carlson, Modeling and control of magnetorheological dampers for seismic response reduction, Smart Mater. Struct. 5 (1999) 565–575 [Google Scholar]
- J. Liu, H.J. Liu, S.J. Dyke, Control-structure interaction for micro-vibration structural control, Smart Mater. Struct. 21 (2012) 105021 [CrossRef] [Google Scholar]
- K.M. Choi, S.W. Cho, H.J. Jung, I.W. Lee, Semi-active fuzzy control for seismic response reduction using magnetorheological dampers, Earthq. Eng. Struct. Dyn. 33 (2004) 723–736 [CrossRef] [Google Scholar]
- D. Giraldo, O. Yoshida, S.J. Dyke, L. Giacosa, Control-oriented system identification using ERA, Struct. Control Heal. Monit. 11 (2004) 311–326 [CrossRef] [Google Scholar]
- C.S. Chang, T.S. Liu, LQG controller for active vibration absorber in an optical disk drive, IEEE Trans. Magn. 43 (2007) 799–801 [CrossRef] [Google Scholar]
- Y. Wang, S. Dyke, Smart system design for a 3D base-isolated benchmark building, Struct. Control Heal. Monit. 15 (2008) 939–957 [CrossRef] [Google Scholar]
- P. Tan, A.K. Agrawal, Benchmark structural control problem for a seismically excited highway bridge-part II: phase I sample control designs, Struct. Control Heal. Monit. 16 (2009) 530–548 [CrossRef] [Google Scholar]
- X.M. Dong, M. Yu, C.R. Liao, W.M. Chen, Comparative research on semi-active control strategies for magneto-rheological suspension, Nonlinear Dyn. 59 (2010) 433–453 [CrossRef] [Google Scholar]
- S.Y. Zhang, X.M. Wang, Study of fuzzy-PID control in MATLAB for two-phase hybrid stepping motor, Appl. Mech. Mater. 341 (2013) 664–667 [CrossRef] [Google Scholar]
- Q.P. Ha, M.T. Nguyen, J. Li, N.M. Kwok, Smart structures with current-driven MR dampers: modeling and second-order sliding mode control, IEEE/ASME Trans. Mechatron. 18 (2013) 1702–1712 [CrossRef] [Google Scholar]
- W. Huang, J. Xu, D.Z.Y. Wu, J.L.K. Lu, Semi-active vibration control using a magneto-rheological (MR) damper with particle swarm optimization, Arab. J. Sci. Eng. 40 (2015) 747–762 [CrossRef] [Google Scholar]
- A. Shafieezadeh, K. Ryan, Y. Chen, Fractional order filter enhanced LQR for seismic protection of civil structures, J. Comput. Nonlinear Dyn. 3 (2008) 21404 [CrossRef] [Google Scholar]
- S. Das, I. Pan, K. Halder, S. Das, A. Gupta, LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index, Appl. Math. Model. 37 (2013) 4253–4268 [CrossRef] [Google Scholar]
- G.F. Panariello, R. Betti, R.W. Longman, Optimal structural control via training, J. Eng. Mech. 123 (1997) 1170–1179 [CrossRef] [Google Scholar]
- B. Basu, S. Nagarajaiah, A wavelet-based time-varying adaptive LQR algorithm for structural control, Eng. Struct. 30 (2008) 2470–2477 [CrossRef] [Google Scholar]
- B. Basu, S. Nagarajaiah, Multiscale wavelet-LQR controller for linear time-varying systems, J. Eng. Mech. 136 (2010) 1143–1151 [CrossRef] [Google Scholar]
- S. Talatahari, A. Kaveh, N.M. Rahbari, Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization, J. Mech. Sci. Technol. 26 (2012) 2523–2534 [CrossRef] [Google Scholar]
- P.C. Fourie, A.A.A. Groenwold, The particle swarm optimization algorithm in size and shape optimization, Struct. Multidiscip. Optim. 23 (2002) 259–267 [Google Scholar]
- G.G. Amiri, A.A. Rad, S. Aghajari, N.K. Hazaveh, Generation of near-field artificial ground motions compatible with median-predicted spectra using PSO-based neural network and wavelet analysis, Comput. Civ. Infrastruct. Eng. 27 (2012) 711–730 [CrossRef] [Google Scholar]
- Y. Nakamura, J. Saita, UrEDAS, the earthquake warning system: today and tomorrow, Earthq. Early Warn. Syst. (2007) 249–281, DOI:10.1007/978-3-540-72241-0_13, ISBN: 978-3-540-72241-0 [CrossRef] [Google Scholar]
- M.G. Sakar, A. Akgül, D. Baleanu, On solutions of fractional Riccati differential equations, Adv. Differ. Equ. 2017 (2017) 39 [CrossRef] [Google Scholar]
- D.P. Serrano, C.V. Pasamontes, R.G. Moreno, Modelos animales de dolor neuropático, Dolor 31 (2016) 70–76 [Google Scholar]
- S.J. Dyke, B.F. Spencer Jr, M.K. Sain, J.D. Carlson, An experimental study of MR dampers for seismic protection, Smart Mater. Struct. 7 (1998) 693–703 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.