Free Access
Issue
Mechanics & Industry
Volume 19, Number 2, 2018
Article Number 205
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2018017
Published online 03 September 2018
  1. E. Ebert, W. Kröger, N. Damaschke, Hydrodynamic nuclei concentration technique in cavitation research and comparison to phase-doppler measurements, in: Journal of Physics: Conference Series, IOP Publishing, Vol. 656, 2015, p. 012111 [CrossRef] [Google Scholar]
  2. S. Kumar, V. Nagarajan, O.P. Sha, Measurement of flow characteristics in propeller slipstream of a twin propeller twin rudder model ship, Int. Shipbuild. Prog. 63 (2017) 1–40 [CrossRef] [Google Scholar]
  3. A. Kleinwächter, K. Hellwig-Rieck, H.J. Heinke, N.A. Damaschke, Full-scale total wake field PIV-measurements in comparison with ANSYS CFD calculations: a contribution to a better propeller design process, J. Mar. Sci. Technol. 22 (2017) 388–400 [CrossRef] [Google Scholar]
  4. C. Guo, T. Wu, Q. Zhang, W. Luo, Y. Su, Numerical simulation and experimental studies on aft hull local parameterized non-geosim deformation for correcting scale effects of nominal wake field, Brodogradnja 68 (2017) 77–96 [CrossRef] [Google Scholar]
  5. H. Ghassemi, The effect of wake flow and skew angle on the ship propeller performance, Sci. Iran. Trans. B: Mech. Eng. 16 (2009) 149–158 [Google Scholar]
  6. B. Ji, X. Luo, Y. Wu, X. Peng, H. Xu, Partially-Averaged Navier-Stokes method with modified k-ε model for cavitating flow around a marine propeller in a non-uniform wake, Int. J. Heat Mass Transf. 55 (2012) 6582–6588 [CrossRef] [Google Scholar]
  7. B. Ji, X. Luo, X. Peng, Y. Wu, H. Xu, Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. Int. J. Multiph. 43 (2012) 13–21 [CrossRef] [Google Scholar]
  8. S. Berger, M. Bauer, M. Druckenbrod, M. Abdel-Maksoud, Investigation of scale effects on propeller-induced pressure fluctuations by a viscous/inviscid coupling approach, in: Proceedings of the Third International Symposium on Marine Propulsors, Tasmania, Australia, 2013 [Google Scholar]
  9. L. Greco, R. Muscari, C. Testa, A. Di Mascio, Marine propellers performance and flow-field prediction by a free-wake panel method, J. Hydrodyn. Ser. B 26 (2014) 780–795 [CrossRef] [Google Scholar]
  10. K.W. Shin, P.B. Regener, P. Andersen, Methods for cavitation prediction on tip-modified propellers in ship wake fields, in: Fourth International Symposium on Marine Propulsors, 2015 549–555 [Google Scholar]
  11. J.E. Martin, T. Michael, P.M. Carrica, Submarine maneuvers using direct overset simulation of appendages and propeller and coupled CFD/potential flow propeller solver, J. Ship Res. 59 (2015) 31–48 [CrossRef] [Google Scholar]
  12. R. Brogliaa, G. Dubbiosoa, D. Durantea, A. DiMascio. Simulation of turning circle by CFD: Analysis of different propeller models and their effect on manoeuvring prediction, Appl. Ocean Res. 39 (2013) 1–10 [CrossRef] [Google Scholar]
  13. N. Abbas, N. Kornev, I. Shevchuk, P. Anschau, CFD prediction of unsteady forces on marine propellers caused by the wake nonuniformity and nonstationarity, Ocean Eng. 104 (2015) 659–672 [CrossRef] [Google Scholar]
  14. G. Vaz, D. Hally, T. Huuva, N. Bulten, P. Muller, P. Becchi, J.L. Herrer, S. Whitworth, R. Macé, A. Korsström, Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation, in: Proceedings of the 4th Int. Symp. on marine Propulsors (SMP'15), Austin, Texas, USA, 2015 [Google Scholar]
  15. F. Alves Pereira, F. Di Felice, F. Salvatore, Propeller Cavitation in non-uniform flow and correlation with the near pressure field, J. Mar. Sci. Eng. 4 (2016) 70 [CrossRef] [Google Scholar]
  16. M. Ueno, Y. Tsukada, Estimation of full-scale propeller torque and thrust using free-running model ship in waves, Ocean Eng. 120 (2016) 30–39 [CrossRef] [Google Scholar]
  17. S. Sun, L. Li, C. Wang, H. Zhang, Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow. Int. J. Nav. Arch. Ocean Eng. 10 (2017) 69–84 [CrossRef] [Google Scholar]
  18. D. Zou, J. Zhang, N. Ta, Z. Rao, The hydroelastic analysis of marine propellers with consideration of the effect of the shaft, Ocean Eng. 131 (2017) 95–106 [CrossRef] [Google Scholar]
  19. Y. Ukon, T. Kudo, H. Yuasa, H. Kamiirisa, Measurement of pressure distributions on a full scale propeller-measurement on a highly skewed propeller, J. Soc. Nav. Arch. Jpn. 170 (1991) 111–123 [CrossRef] [Google Scholar]
  20. Y. Ukon, T. Kudo, H. Yuasa, H. Kamiirisa, Measurement of pressure distribution on a full scale propellers, in: Sym. of Propeller/Shafting, SNAME, Virginia, 1991 [Google Scholar]
  21. F. Salvatore, F. Di Felice, T. Bugalski, The INSEAN 7000 DWT tanker: results of resistance and propulsion tests, The Italian Marine Technology Re search Institute Rome, Italy, Technical Report CNR-INSEAN/CTO, May 2016 /February 2017 [Google Scholar]
  22. F. Alves Pereira, F. Di Felice, F. Salvatore, Propeller cavitation in non-uniform flow and correlation with the near pressure field, J. Mar. Sci. Eng. 4 (2016) [CrossRef] [Google Scholar]
  23. R. Shamsi, H. Ghassemi, M. Iranmanesh, A Comparison of the BEM and RANS Calculations for the hydrodynamic performance of the PODS, Mech. Ind. 18 (2017) [Google Scholar]
  24. R. Shamsi, H. Ghassemi, Determining the hydrodynamic loads of the marine propeller forces in oblique flow and off-design condition, Iran. J. Sci. Technol., Trans. Mech. Eng. 41 (2017) 121–127 [CrossRef] [Google Scholar]
  25. M. Motallebi-Nejad, M. Bakhtiari, H. Ghassemi, M. Fadavie, Numerical analysis of ducted propeller and pumpjet propulsion system using periodic computational domain, J. Mar. Sci. Tech. 22 (2017) 559–573 [CrossRef] [Google Scholar]
  26. H. Ghassemi, H. Zakerdoost, Ship hull-propeller system optimization based on the multi-objective evolutionary algorithm, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 231 (2017) 175–192 [CrossRef] [Google Scholar]
  27. M. Gorji, H. Ghassemi, J. Mohammadi, Calculation of sound pressure level of marine propelelr in low frequency, J. Low Freq. Noise, Vib. Act. Control 37 (2018) 60–73 [CrossRef] [Google Scholar]
  28. M. Chamanara, H. Ghassemi, M. Fadavie, M.A. Ghassemi, Effects of the duct angle and propeller location on the hydrodynamic characteristics of the ducted propeller, Ship Sci. Technol. 11 (2018) 41–48 [Google Scholar]
  29. M. Maghareh, H. Ghassemi, Propeller efficiency enhancement by the blade's tip reformation, Am. J. Mech. Eng. 5 (2017) 70–75 [CrossRef] [Google Scholar]
  30. J.S. Carlton, Marine propeller and propulsion, 3rd ed., Elsevier publication Ltd., 2012 [Google Scholar]
  31. J.P. Ghose, R.P. Gokarn, Basic ship propulsion, Allied Publishers, New Delhi, 2004 [Google Scholar]
  32. F. Noblesse, C. Zhang, J. He, Y. Zhu, C. Yang, W. Li, Observations and computations of narrow Kelvin ship wakes, J. Ocean Eng. Sci. 1 (2016) 52–65 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.