Open Access
Mechanics & Industry
Volume 19, Number 2, 2018
Article Number 203
Number of page(s) 15
Published online 03 September 2018
  1. C.M. Taylor, Automobile engine tribology-design considerations for efficiency and durability, Wear 221 (1998) 1–8 [CrossRef] [Google Scholar]
  2. E.P. Becker, Trends in tribological materials and engine technology, Tribol. Int. 37 (2004) 569–575 [CrossRef] [Google Scholar]
  3. P.C. Mishra, S. Balakrishnan, H. Rahnejat, Tribology of compression ring-to-cylinder contact at reversal, Proc. IMechE Part J: J. Eng. Tribol. 222 (2008) 815–826 [CrossRef] [Google Scholar]
  4. K. Holmberg, P. Andersson, A. Erdemir, Global energy consumption due to friction in passenger cars, Tribol. Int. 47 (2012) 221–234 [CrossRef] [Google Scholar]
  5. S.C. Tung, M.L. McMillan, Automotive tribology overview of current advances and challenges for the future, Tribol. Int. 37 (2004) 517–536 [CrossRef] [Google Scholar]
  6. G.G.A. Fatjo, E.H. Smith, I. Sherrington, Mapping lubricating film thickness, film extent and ring twist for the compression-ring in a firing internal combustion engine, Tribol. Int. 70 (2014) 112–118 [CrossRef] [Google Scholar]
  7. V.W. Wong, S.C. Tung, Overview of automotive engine friction and reduction trends-effects of surface, material, and lubricant-additive technologies, Friction 4 (2016) 1–28 [CrossRef] [Google Scholar]
  8. N.W. Bolander, B.D. Steenwyk, F. Sadeghi, G.R. Gerber, Lubrication regime transitions at the piston ring-cylinder liner interface, Proc. IMechE Part J: J. Eng. Tribol. 219 (2005) 19–31 [CrossRef] [Google Scholar]
  9. C. Baker, S. Theodossiades, R. Rahmani, H. Rahnejat, B. Fitzsimons, On the transient three-dimensional tribodynamics of internal combustion engine top compression ring, ASME J. Eng. Gas Turb. Power 139 (2017) 062801 [CrossRef] [Google Scholar]
  10. Y.R. Jeng, Theoretical analysis of piston-ring lubrication part I-fully flooded lubrication, Tribol. Trans. 35 (1992) 696–706 [CrossRef] [Google Scholar]
  11. G.A. Livanos, N.P. Kyrtatos, Friction model of a marine diesel engine piston assembly, Tribol. Int. 40 (2007) 1441–1453 [CrossRef] [Google Scholar]
  12. R.I. Taylor, Squeeze film lubrication in piston rings and reciprocating contacts, Proc. IMechE Part J: J. Eng. Tribol. 229 (2015) 977–988 [CrossRef] [Google Scholar]
  13. A. Usman, C.W. Park, Transient lubrication of piston compression ring during cold start-up of SI engine, Int. J. Pr. Eng. Man. Gt. 3 (2016) 81–90 [Google Scholar]
  14. T. Hamatake, Y. Wakuri, M. Soejima, T. Kitahara, Effects of lubricant viscosity on the mixed lubrication of a piston ring pack in an internal combustion engine, Lubri. Sci. 15 (2003) 101–117 [CrossRef] [Google Scholar]
  15. M.K.A. Ali, X.J. Hou, R.F. Turkson, M. Ezzat, An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines, Proc. IMechE Part K: J. Multi-body Dyn. 230 (2016) 329–349 [Google Scholar]
  16. P. Obert, T. Müller, H.J. Füßer, D. Bartel, The influence of oil supply and cylinder liner temperature on friction, wear and scuffing behavior of piston ring cylinder liner contacts-a new model test, Tribol. Int. 94 (2016) 306–314 [CrossRef] [Google Scholar]
  17. R. Rahmani, H. Rahnejat, B. Fitzsimons, D. Dowson, The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction, Appl. Energ. 191 (2017) 568–581 [CrossRef] [Google Scholar]
  18. F.J. Profito, E. Tomanik, D.C. Zachariadis, Effect of cylinder liner wear on the mixed lubrication regime of TLOCRs, Tribol. Int. 93 (2016) 723–732 [CrossRef] [Google Scholar]
  19. Z.N. Zhang, J. Liu, Y.B. Xie, Design approach for optimization of a piston ring profile considering mixed lubrication, Friction 4 (2016) 225–346 [Google Scholar]
  20. Y. Piao, S.D. Gulwadi, Numerical investigation of the effects of axial cylinder bore profiles on piston ring radial dynamics, ASME J. Eng. Gas Turb. Power 125 (2003) 1081–1089 [CrossRef] [Google Scholar]
  21. G. Styles, R. Rahmani, H. Rahnejat, B. Fitzsimons, In-cycle and life-time friction transience in piston ring-liner conjunction under mixed regime of lubrication, Int. J. Engine Res. 15 (2014) 862–876 [CrossRef] [Google Scholar]
  22. P.C. Mishra, Tribodynamic modeling of piston compression ring and cylinder liner conjunction in high-pressure zone of engine cycle, Int. J. Adv. Manuf. Technol. 66 (2013) 1075–1085 [CrossRef] [Google Scholar]
  23. M.T. Ma, I. Sherrington, E.H. Smith, N. Grice, Development of a detailed model for piston-ring lubrication in IC engines with circular and non-circular cylinder bores, Tribol. Int. 30 (1997) 779–788 [CrossRef] [Google Scholar]
  24. N. Morris, R. Rahmani, H. Rahnejat, P.D. King, B. Fitzsimons, The influence of piston ring geometry and topography on friction, Proc. IMechE Part J: J. Eng. Tribol. 227 (2013) 141–153 [CrossRef] [Google Scholar]
  25. W.W.F. Chong, S. Howell-Smith, M. Teodorescu, N.D. Vaughan, The influence of inter-ring pressures on piston-ring/liner tribological conjunction, Proc. IMechE Part J: J. Eng. Tribol. 227 (2013) 154–167 [CrossRef] [Google Scholar]
  26. A. Usman, T.A. Cheema, C.W. Park, Tribological performance evaluation and sensitivity analysis of piston ring lubricating film with deformed cylinder liner, Proc. IMechE Part J: J. Eng. Tribol. 229 (2015) 1455–1468 [CrossRef] [Google Scholar]
  27. A. Usman, C.W. Park, Numerical investigation of frictional behavior and energy loss in mixed-hydrodynamic contact of piston ring pack with deformed cylinder liner during warm-up period of SI-engine, Energ. Convers. Manag. 117 (2016) 115–131 [CrossRef] [Google Scholar]
  28. C.X. Gu, X.H. Meng, Y.B. Xie, J.Z. Fan, A thermal mixed lubrication model to study the textured ring/liner conjunction, Tribol. Int. 101 (2016) 178–193 [CrossRef] [Google Scholar]
  29. H. Shahmohamadi, R. Rahmani, H. Rahnejat, C.P. Garner, P.D. King, Thermo-mixed hydrodynamics of piston compression ring conjunction, Tribol. Lett. 51 (2013) 323–340 [CrossRef] [Google Scholar]
  30. C. Lenauer, C. Tomastik, T. Wopelka, M. Jech, Piston ring wear and cylinder liner tribofilm in tribotests with lubricants artificially altered with ethanol combustion products, Tribol. Int. 82 (2015) 415–422 [CrossRef] [Google Scholar]
  31. L. Ba, Z.P. He, L.Y. Guo, Y. Chiang, G.C. Zhang, X. Lu, Piston ring-cylinder liner tribology investigation in mixed lubrication regime: part I-correlation with bench experiment, Ind. Lubr. Tribol. 67 (2015) 520–530 [CrossRef] [Google Scholar]
  32. G.C. Buscaglia, M. Jai, A new numerical scheme for non uniform homogenized problems: application to the non linear Reynolds compressible equation, Math. Probl. Eng. 7 (2001) 355–378 [CrossRef] [Google Scholar]
  33. D. Gropper, L. Wang, T.J. Harvey, Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings, Tribol. Int. 94 (2016) 509–529 [CrossRef] [Google Scholar]
  34. N. Patir, H.S. Cheng, An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication, ASME J. Lubr. Technol. 100 (1978) 12–17 [Google Scholar]
  35. C.X. Gu, X.H. Meng, Y.B. Xie, D. Zhang, Mixed lubrication problems in the presence of textures: an efficient solution to the cavitation problem with consideration of roughness effects, Tribol. Int. 103 (2016) 516–528 [CrossRef] [Google Scholar]
  36. Y. Mao, L.C. Zeng, Y. Lu, Modeling and optimization of cavitation on a textured cylinder surface coupled with the wedge effect, Tribol. Int. 104 (2016) 212–224 [CrossRef] [Google Scholar]
  37. L. Bobach, R. Beilicke, D. Bartel, L. Deters, Thermal elastohydrodynamic simulation of involute spur gears incorporating mixed friction, Tribol. Int. 48 (2012) 191–206 [CrossRef] [Google Scholar]
  38. C.W. Wu, L.Q. Zheng, An average Reynolds equation for partial film lubrication with a contact factor, ASME J. Tribol. 111 (1989) 188–191 [CrossRef] [Google Scholar]
  39. N. Morris, M. Mohammadpour, R. Rahmani, P.M. Johns-Rahnejat, H. Rahnejat, D. Dowson, Effect of cylinder deactivation on tribological performance of piston compression ring and connecting bearing, Tribol. Int. (2018) DOI:10.1016/j.triboint.2017.12.045 [Google Scholar]
  40. H.M. Checo, A. Jaramillo, R.F. Ausas, G.C. Buscaglia, The lubrication approximation of the friction force for the simulation of measured surfaces, Tribol. Int. 97 (2016) 390–399 [CrossRef] [Google Scholar]
  41. C.X. Gu, X.H. Meng, Y.B. Xie, X.L. Kong, Performance of surface texturing during start up under starved and mixed lubrication, ASME J. Tribol. 139 (2017) 011702 [Google Scholar]
  42. X.L. Liu, X.R. Bai, J.L. Cui, P.R. Yang, Thermal elastohydrodynamic lubrication analysis for tilted and skewed rollers in cylindrical roller bearings, Proc. IMechE Part J: J. Eng. Tribol. 230 (2016) 428–441 [CrossRef] [Google Scholar]
  43. S.D. Gulwadi, Analysis of tribological performance of a piston ring pack, Tribol. Trans. 43 (2000) 151–162 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.