Open Access
Issue
Mechanics & Industry
Volume 19, Number 4, 2018
Article Number 403
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2018003
Published online 12 November 2018
  1. J.C. Evvard, S.H. Maslen, Three-dimensional supersonic nozzles and inlets of arbitrary exit cross section, NASA TN- 2688, 1952 [Google Scholar]
  2. A. Haddad, J.B. Moss, Aerodynamic design for Supersonic nozzles of arbitrary cross section, J. Propuls. Power 6 (1990) 740–746 [CrossRef] [Google Scholar]
  3. M.K. Aukin, A.N. Kraiko, D.A. Lubinov, V.E. Makarov, N.I. Tillyaeva, Designing three dimensional nozzles to achieve near uniform supersonic or hypersonic flow in the rectangular exit section, Phys. Astron. 30 (1995) 787–794 [Google Scholar]
  4. I.E. Beckwith, H.W. Ridyard, N. Cromer, The aerodynamic design of high Mach number nozzles utilizing axisymmetric flow with application to a nozzle of square test section, NACA TN 2711, 1952 [Google Scholar]
  5. A.I. Rylov, Design of supersonic asymmetric nozzles, Phys. Astron. 12 (1977) 414–420 [Google Scholar]
  6. O. Abada, T. Zebbiche, A. Abdallah El-Hirtsi, Three-dimensional supersonic minimum length nozzle design at high temperature for arbitrary exit cross section, Arab J. Sci. Eng. 39 (2014) 8233–8245 [CrossRef] [Google Scholar]
  7. Jr. J.D. Anderson, Modern compressible flow with historical perspective, 2nd edition, McGraw-Hill Book Company, New York, USA, 1982 [Google Scholar]
  8. T. Zebbiche, Stagnation temperature effect on the supersonic axisymmetric minimum length nozzle design with application for air, Adv. Space Res. 48 (2011) 1656–1675 [CrossRef] [Google Scholar]
  9. B.M. Argrow, G. Emanuel, Comparison of minimum length nozzles, J. Fluid Eng. 110 (1988) 283–288 [CrossRef] [Google Scholar]
  10. L.Z. Dumitrescu, Minimum length axisymmetric laval nozzles, AIAA J. 13 (1975) 520–532 [CrossRef] [Google Scholar]
  11. C.R. Peterson, P.G. Hill, Mechanics and Thermodynamics of Propulsion, Addition-Wesley Publishing Company Inc., New York, USA, 1965 [Google Scholar]
  12. G.P. Sutton, O. Biblarz, Rocket propulsion elements, 8th edition, John Wiley and Sons, 2010, New York, USA [Google Scholar]
  13. S.M. Patel, D.S. Mane, M. Raman, Concepts and CFD analysis of Laval nozzle, Int. J. Mech. Eng. Technol. 7 (2016) 221–240 [Google Scholar]
  14. H.D. Deshpande, S.S. Vidwans, P.R. Mahale, R.S. Joshi, K.R. Jagtap, Theoretical & CFD analysis of laval nozzle, Int. J. Mech. Prod. Eng. 22 (2014) 33–36 [Google Scholar]
  15. V. Venkatesh, C.J. Reddy, Modelling and simulation of supersonic nozzle using computational fluid dynamics, Int. J. Nov. Res. Interdiscip. Stud. 12 (2015) 16–27 [Google Scholar]
  16. G.M. Kumar, D.X. Fernando, R. Muthu Kumar, Design and optimization of lavel nozzle to prevent shock induced flow separation, Adv. Aerosp. Sci. Appl. 13 (2013) 119–124 [Google Scholar]
  17. S.T. Travis, Introduction to rocket science and engineering, CRC Press, Taylor and Francis group, USA, 2006 [Google Scholar]
  18. T. Zebbiche, Z. Youbi, Effect of stagnation temperature on the supersonic flow parameters with application for air in nozzles, Aeronaut. J. 111 (2007) 31–40 [CrossRef] [Google Scholar]
  19. T. Zebbiche, Z. Youbi, Supersonic flow parameters at high temperature, Application for Air in nozzles, German Aerospace Congress 2005, DGLR-2005-0256, Friendrichshafen, Germany, 2005 [Google Scholar]
  20. B.J. McBride, S. Gordon, M.A. Reno, Coeffcients for calculating thermodynamic and transport properties of individual species, NASA TM 4513, 1993 [Google Scholar]
  21. B. Démidovitch, I. Maron, Eléments de calcul numérique, Editions MIR, Moscow, Russia, 1987 [Google Scholar]
  22. A. Raltson, A. Rabinowitz, A first course in numerical analysis, McGraw Hill Book Company, 1985, New York, USA [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.