Free Access
Issue
Mechanics & Industry
Volume 19, Number 4, 2018
Article Number 404
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2018034
Published online 01 November 2018
  1. B. Saidi, A. Boulila, M. Ayadi, R. Nasri, Experimental force measurements in single point incremental sheet forming SPIF, Mech. Ind. 16 (2015) 410 [CrossRef] [Google Scholar]
  2. L.B. Said, J. Mars, M. Wali, F. Dammak, Effects of the tool path strategies on incremental sheet metal forming process, Mech. Ind. 17 (2016) 411 [CrossRef] [EDP Sciences] [Google Scholar]
  3. A. Asgari, M. Sedighi, M. Riahi, Investigation of dimensional accuracy in incremental sheet metal hammering process: a parametric study, Mech. Ind. 16 (2015) 308 [CrossRef] [Google Scholar]
  4. N. Alberti, L. Cannizzaro, E.L. Valvo, F. Micari, Analysis of metal spinning processes by the Adina code, Comput. Struct. 32 (1989) 517–525 [CrossRef] [Google Scholar]
  5. D.-C. Kang, X.-C. Gao, X.-F. Meng, Z.-H. Wang, Study on the deformation mode of conventional spinning of plates, J. Mater. Process. Technol. 91 (1999) 226–230 [CrossRef] [Google Scholar]
  6. Y. Jianguo, M. Makoto, Effects of indented feed of roller tool on parallel spinning of circular aluminum tube, J. Mater. Process. Technol. 128 (2002) 274–279 [CrossRef] [Google Scholar]
  7. M. Murata, T. Kuboki, T. Murai, Compression spinning of circular magnesium tube using heated roller tool, J. Mater. Process. Technol. 162–163 (2005) 540–545 [CrossRef] [Google Scholar]
  8. N. Akkus, M. Kawahara, An experimental and analytical study on dome forming of seamless Al tube by spinning process, J. Mater. Process. Technol. 173 (2006) 145–150 [CrossRef] [Google Scholar]
  9. H. Lexian, B. Dariani, An analytical contact model for finite element analysis of tube spinning process, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 222 (2008) 1375–1385 [CrossRef] [Google Scholar]
  10. H. Lexian, B. Dariani, Effect of roller nose radius and release angle on the forming quality of a hot-spinning process using a non-linear finite element shell analysis, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 223 (2009) 713–722 [CrossRef] [Google Scholar]
  11. H. Zoghi, A.F. Arezoodar, M. Sayeaftabi, Enhanced finite element analysis of material deformation and strain distribution in spinning of 42CrMo steel tubes at elevated temperature, Mater. Des. 47 (2013) 234–242 [CrossRef] [Google Scholar]
  12. H. Zoghi, A. Fallahi Arezoodar, M. Sayeaftabi, Effect of feed and roller contact start point on strain and residual stress distribution in dome forming of steel tube by spinning at an elevated temperature, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226 (2012) 1880–1890 [CrossRef] [Google Scholar]
  13. W. Xu, X. Zhao, H. Ma, D. Shan, H. Lin, Influence of roller distribution modes on spinning force during tube spinning, Int. J. Mech. Sci. 113 (2016) 10–25 [CrossRef] [Google Scholar]
  14. G. Zhao, C. Lu, R. Zhang, Z. Guo, M. Zhang, Uneven plastic deformation behavior of high-strength cast aluminum alloy tube in multi-pass hot power backward spinning, Int. J. Adv. Manuf. Technol. 88 (2017) 907–921 [CrossRef] [Google Scholar]
  15. X. Wang, M. Zhan, J. Guo, B. Zhao, Evaluating the applicability of GTN damage model in forward tube spinning of aluminum alloy, Metals 6 (2016) 136 [CrossRef] [Google Scholar]
  16. W. Xu, H. Wu, H. Ma, D. Shan, Damage evolution and ductile fracture prediction during tube spinning of titanium alloy, Int. J. Mech. Sci. 135 (2018) 226–239 [CrossRef] [Google Scholar]
  17. M. Kuss, B. Buchmayr, Damage minimised ball spinning process design, J. Mater. Process. Technol. 234 (2016) 10–17 [CrossRef] [Google Scholar]
  18. H. Guo, J. Wang, G.-d. Lu, Z.-h. Sang, Q.-h. Wang, A study of multi-pass scheduling methods for die-less spinning, J. Zhejiang Univ. Sci. A 18 (2017) 413–429 [CrossRef] [Google Scholar]
  19. Z. Han, Z. Fan, Y. Xiao, Z. Jia, A research on thickness distribution of oblique cone in dieless shear spinning, Int. J. Adv. Manuf. Technol. 90 (2017) 2901–2912 [CrossRef] [Google Scholar]
  20. Z. Jia, Q. Xu, Z. Han, W. Peng, Precision forming of the straight edge of square section by die-less spinning, J. Manuf. Sci. Eng. 138 (2016) 011006 [CrossRef] [Google Scholar]
  21. Z. Jia, Z. Han, B. Liu, Z. Fan, Numerical simulation and experimental study on the non-axisymmetric die-less shear spinning, Int. J. Adv. Manuf. Technol. 92 (2017) 497–504 [CrossRef] [Google Scholar]
  22. Abaqus analysis user's manual. ABAQUS Inc, USA, 2012 [Google Scholar]
  23. E. Badami, M.T. Salehi, S.H. Seyedein, Modeling high temperature flow behavior of an AL6061 Aluminium alloy, Iran. J. Mater. Sci. Eng. 11 (2014) 63–71 [Google Scholar]
  24. L. Wang, H. Long, Investigation of material deformation in multi-pass conventional metal spinning, Mater. Des. 32 (2011) 2891–2899 [CrossRef] [Google Scholar]
  25. G. Tian, Z.-q. Yu, Y.-x. Zhao, S. Evsyukov, X.-m. Lai, Effects of backward path parameters on formability in conventional spinning of aluminum hemispherical parts, Trans. Nonferrous Met. Soc. China 28 (2018) 328–339 [CrossRef] [Google Scholar]
  26. J. Wang, T. Ge, G.-d. Lu, F. Li, A study of 3D finite element modeling method for stagger spinning of thin-walled tube, J. Zhejiang Univ. Sci. A 17 (2016) 646–666 [CrossRef] [Google Scholar]
  27. L. Wang, H. Long, A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning, J. Mater. Process. Technol. 211 (2011) 2140–2151 [CrossRef] [Google Scholar]
  28. M. Haghshenas, M. Jhaver, R. Klassen, J. Wood, Plastic strain distribution during splined-mandrel flow forming, Mater. Des. 32 (2011) 3629–3636 [CrossRef] [Google Scholar]
  29. M. Roy, R. Klassen, J. Wood, Evolution of plastic strain during a flow forming process, J. Mater. Process. Technol. 209 (2009) 1018–1025 [CrossRef] [Google Scholar]
  30. C.C. Huang, H.Y. Fan, C.H. Hung, J.C. Hung, C.R. Lin, Three Dimensional Finite Element Analysis on Neck-spinning Process of Thick-Walled Tube at an Elevated Temperature, in Advanced Materials Research, Trans Tech Publ, 2012, pp. 269–277 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.