Open Access
Mechanics & Industry
Volume 19, Number 4, 2018
Article Number 405
Number of page(s) 14
Published online 01 November 2018
  1. K.L. Johnson, Contact mechanics, Cambridge University Press, London, 1985 [Google Scholar]
  2. Y. Zongda, W. Hongli, Thermal stress, Higher Education Press, Beijing, 1993 [Google Scholar]
  3. J.C. Jaeger, Moving sources of heat and the temperature at sliding contacts, J. Proc. R. Soc. New South Wales, 76 (1942) 203–224 [Google Scholar]
  4. H. Chen, Y. Hu, H. Wang, et al., Calculation of temperature fields of bodies in sliding contact without lubrication, J. Tsinghua Univ. Sci. Technol. 47 (2007) 1962–1964 [Google Scholar]
  5. Z.B. Hou, R. Komanduri, General solutions for stationary/moving plane heat source problems in manufacturing and tribology, Int. J. Heat Mass Transfer 43 (2000) 1679–1698 [CrossRef] [Google Scholar]
  6. P. Levin, A general solution of 3-D quasi-steady-state problem of a moving heat source on a semi-infinite solid, Mech. Res. Commun. 35 (2008) 151–157 [CrossRef] [Google Scholar]
  7. R. Bosman, M.B. de Rooij, Transient thermal effects and heat partition in sliding contacts, J. Tribol. 132 (2010) 021401–021409 [CrossRef] [Google Scholar]
  8. W.L. Kuo, J.F. Lin, General temperature rise solution for a moving plane heat source problem in surface grinding, Int. J. Adv. Manuf. Technol. 31 (2006) 268–277 [CrossRef] [Google Scholar]
  9. G. Araya, G. Gutierrez, Analytical solution for a transient, three-dimensional temperature distribution due to a moving laser beam, Int. J. Heat Mass Transfer 49 (2006) 4124–4131 [CrossRef] [Google Scholar]
  10. H. Belghazi, M. El Ganaoui, J.C. Labbe, Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source, Int. J. Therm. Sci. 49 (2010) 311–318 [CrossRef] [Google Scholar]
  11. M. Hamraoui, T. Osman, A. Boucheffa, et al., Analytical modelling of the three-dimensional steady-state temperature in a bearing ring, Mech. Ind. 12 (2011) 1–4 [Google Scholar]
  12. F.E. Kennedy, X. Tian, Modeling sliding contact temperatures, including effects of surface roughness and convection, J. Tribol. 138 (2016) 042101 [CrossRef] [Google Scholar]
  13. F.E. Kennedy, Y. Lu, I. Baker, Contact temperatures and their influence on wear during pin-on disk tribotesting, Tribol. Int. 82 (2015) 534–542 [CrossRef] [Google Scholar]
  14. N. Alilat, A. Bairi, N. Laraqi, Three-dimensional calculation of temperature in a rotating disk subjected to an eccentric circular heat source and surface cooling, Numer. Heat Transfer, 46 (2004) 167–180 [CrossRef] [Google Scholar]
  15. N. Laraqi, N. Alilat, J.M. Garcia de Maria, A. Bairi, Temperature and division of heat in a pin-on-disc frictional derive−exact analytical solution, Wear, 266 (2009) 765–770 [CrossRef] [Google Scholar]
  16. D.G. Bansal, J.L. Streator, On estimation of maximum and average interfacial temperature rise in sliding elliptical contacts, Wear, 278–279 (2012) 18–27 [CrossRef] [Google Scholar]
  17. H. Blok, Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating condition, in: Proceeding of the Institute of Mechanical Engineers General Discussion of Lubrication, Institute of Mechanical Engineers, London, 1937, pp. 222–235 [Google Scholar]
  18. X. Tian, F.E. Kennedy, Maximum and average flash temperatures in sliding contacts, J. Tribol. 116 (1994) 167–174 [CrossRef] [Google Scholar]
  19. H.W. Wu, Y.Y. Chen, J.H. Horng, Contact temperature under three-body dry friction conditions, Wear, 330–331 (2015) 85–92 [CrossRef] [Google Scholar]
  20. A. Belhocine, M. Bouchetara, Transient thermal Ansys analysis of dry contacts-Application to automotive braking, Mech. Ind. 13 (2012) 45–57 [CrossRef] [Google Scholar]
  21. Y. Wang, W. Tang, Y. Chen, et al., Investigation into the meshing friction heat generation and transient thermal characteristics of spiral beral gears, Appl. Therm. Eng. 119 (2017) 245–253 [CrossRef] [Google Scholar]
  22. H. Xiao, D. Tang, Z. Deng, et al., Thermal analysis and experimental verification of the transmission in a lunar drilling system, Appl. Therm. Eng. 113 (2017) 765–773 [CrossRef] [Google Scholar]
  23. W. Li, J. Tian, Unsteady-state temperature field and sensitivity analysis of gear transmission, Tribol. Int. 116 (2017) 229–243 [CrossRef] [Google Scholar]
  24. J. Wen, M.M. Khonsari, Thermomechanical effects on transient temperature in non-conformal contacts experiencing reciprocating sliding motion, Int. J. Heat Mass Transfer, 52 (2009) 4390–4399 [CrossRef] [Google Scholar]
  25. P. Hwang, X. Wu, Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermo-mechanical coupling model, J. Mech. Sci. Technol. 24 (2010) 81–84 [Google Scholar]
  26. M.N. Balci, S. Dag, B. Yildirim, Subsurface stresses in graded coatings subjected to frictional contact with heat generation, J. Therm. Stresses, 40 (2017) 517–534 [CrossRef] [Google Scholar]
  27. G. Zhou, L. Hua, D. Qian, et al., Effects of axial rolls motions on radial-axial rolling process for large-scale alloy steel ring with 3D coupled thermo-mechanical FEA, Int. J. Mech. Sci. 59 (2012) 1–7 [CrossRef] [Google Scholar]
  28. A. Zahedi, M.R. Movahhedy, Thermo-mechanical modeling of high speed spindles, Sci. Iran. B, 19 (2012) 282–293 [CrossRef] [Google Scholar]
  29. F.E. Kennedy Jr, Thermal and thermomechanical effects in dry sliding, Wear, 100 (1984) 453–476 [CrossRef] [Google Scholar]
  30. S. Liu, Q. Wang, A three-dimensional thermomechanical model of contact between non-conforming rough surfaces, J. Tribol. 123 (2001) 17–26 [CrossRef] [Google Scholar]
  31. S. Liu, Q. Wang, Transient thermoelastic stress field in a half-space, J. Tribol. 125 (2003) 33–43 [CrossRef] [Google Scholar]
  32. W.W. Chen, Q.J. Wang, Thermomechanical analysis of elastoplastic bodies in a sliding spherical contact and the effects of sliding speed, heat partition, and thermal softening, J. Tribol. 130 (2008) 041402–041410 [CrossRef] [Google Scholar]
  33. L.J. Wang, Z.Y. Ai, Plane strain and three-dimensional analysis for thermo-mechanical behavior of multilayered transversely isotropic materials, Int. J. Mech. Sci. 103 (2015) 199–221 [CrossRef] [Google Scholar]
  34. G. Altan, M. Topcu, N.B. Bektas, et al., Elastic-plastic thermal stress analysis of an aluminum composite disc under parabolic thermal load distribution, J. Mech. Sci. Technol. 22 (2008) 2318–2327 [CrossRef] [Google Scholar]
  35. Y. Zhang, Y.Y. Xiang, A semi-analytical method and its application for calculating the thermal stress and displacement of sparsely fractured rocks with water flow and heat transfer, J. Zhejiang Univ. Sci. A Appl. Phys. Eng. 16 (2015) 922–934 [CrossRef] [Google Scholar]
  36. R.D. Kulchytsky-Zhyhailo, Z.S. Olesiak, Stress distribution in rotating solids with frictional heat excited over contact region, J. Therm. Stresses, 29 (2006) 957–972 [CrossRef] [Google Scholar]
  37. J.J. Kalker, Numerical calculation of the elastic field in a half-space, Commun. Appl. Numer. Methods, 2 (1986) 401–410 [CrossRef] [Google Scholar]
  38. S. Liu, Q. Wang, G. Liu, A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses, Wear, 243 (2000) 101–111 [CrossRef] [Google Scholar]
  39. S. Liu, Q. Wang, Studying contact stress fields caused by surface tractions with a discrete convolution and fast Fourier transform algorithm, J. Tribol. 124 (2002) 36–45 [CrossRef] [Google Scholar]
  40. X. Li, H. Ding, Z. Tang, Study of themo-physical properties for GCr15 bearing steel in continuous casting, J. Mater. Metall. 9 (2010) 241–244 [Google Scholar]
  41. K. Knothe, S. Liebelt, Determination of temperatures for sliding contact with application for wheel-rail systems, Wear, 189 (1995) 91–99 [CrossRef] [Google Scholar]
  42. F.E. Kennedy, Contact temperature of a moving solid surface, Springer US, 2013, pp. 544–548 [Google Scholar]
  43. M.A. Tanvir, Temperature rise due to slip between wheel and rail-an analytical solution for Hertzian contact, Wear, 61 (1980) 295–308 [CrossRef] [Google Scholar]
  44. J.R. Barber, Distortion of the semi-infinite solid due to transient surface heating, Int. J. Mech. Sci. 14 (1972) 377–393 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.