Open Access
Mechanics & Industry
Volume 20, Number 2, 2019
Article Number 202
Number of page(s) 13
Published online 15 April 2019
  1. U. Stöbener, L. Gaul, Active vibration control of a car body based on experimentally evaluated modal parameters, Mech. Syst. Signal Process. 15 (2001) 173–188 [Google Scholar]
  2. M. Sabatini, P. Gasbarri, R. Monti, G.B. Palmerini, Vibration control of a flexible space manipulator during on orbit operations, Acta Astronaut. 73 (2012) 109–121 [Google Scholar]
  3. Z. Wang, X. Qin, H.T.Y. Yang, Active suppression of panel flutter with piezoelectric actuators using eigenvector orientation method, J. Sound Vib. 331 (2012) 1469–1482 [Google Scholar]
  4. X.Q. He, T.Y. Ng, S. Sivashanker, K.M. Liew, Active control of FGM plates with integrated piezoelectric sensors and actuators, Int. J. Solids Struct. 38 (2001) 1641–1655 [Google Scholar]
  5. Y.K. Kang, H.C. Park, J. Kim, S.-B. Choi, Interaction of active and passive vibration control of laminated composite beams with piezoceramic sensors/actuators, Mater. Des. 23 (2002) 277–286 [Google Scholar]
  6. J.M. Simões Moita, I.F.P. Correia, C.a.M. Mota Soares, C.A. Mota Soares, Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators, Comput. Struct. 82 (2004) 1349–1358 [Google Scholar]
  7. M.K. Kwak, S. Heo, Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller, J. Sound Vib. 304 (2007) 230–245 [Google Scholar]
  8. J. Shan, H.-T. Liu, D. Sun, Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF), Mechatronics 15 (2005) 487–503 [CrossRef] [Google Scholar]
  9. G. Song, S.P. Schmidt, B.N. Agrawal, Experimental robustness study of positive position feedback control for active vibration suppression, J. Guid. Control Dyn. 25 (2002) 179–182 [Google Scholar]
  10. E. Omidi, S.N. Mahmoodi, Vibration control of collocated smart structures using H∞ modified positive position and velocity feedback, J. Vib. Control 22 (2016) 2434–2442 [Google Scholar]
  11. H. Karagülle, L. Malgaca, H.F. Öktem, Analysis of active vibration control in smart structures by ANSYS, Smart Mater. Struct. 13 (2004) 661 [Google Scholar]
  12. S.M. Khot, N.P. Yelve, R. Tomar, S. Desai, S. Vittal, Active vibration control of cantilever beam by using PID based output feedback controller, J. Vib. Control 18 (2012) 366–372 [Google Scholar]
  13. S. Zhang, R. Schmidt, X. Qin, Active vibration control of piezoelectric bonded smart structures using PID algorithm, Chin. J. Aeronaut. 28 (2015) 305–313 [CrossRef] [Google Scholar]
  14. J. Fei, Active vibration control of flexible steel cantilever beam using piezoelectric actuators, in: Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005, SSST '05, IEEE, NJ, 2005, pp. 35–39 [Google Scholar]
  15. K. Makihara, J. Onoda, K. Minesugi, Using tuned electrical resonance to enhance bang-bang vibration control, AIAA J. 45 (2007) 497–504 [Google Scholar]
  16. H.S. Tzou, W.K. Chai, Design and testing of a hybrid polymeric electrostrictive/piezoelectric beam with bang–bang control, Mech. Syst. Signal Process. 21 (2007) 417–429. [Google Scholar]
  17. Y. Wang, D.J. Inman, Comparison of control laws for vibration suppression based on energy consumption, J. Intell. Mater. Syst. Struct. 22 (2011) 795–809 [Google Scholar]
  18. S. Narayanan, V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators, J. Sound Vib. 262 (2003) 529–562 [Google Scholar]
  19. M. Dadfarnia, N. Jalili, B. Xian, D.M. Dawson, A Lyapunov-based piezoelectric controller for flexible cartesian robot manipulators, J. Dyn. Syst. Meas. Control 126 (2004) 347–358 [Google Scholar]
  20. E. Padoin, O. Menuzzi, E.A. Perondi, J.S.O. Fonseca, Modeling and LQR/LQG control of a cantilever beam using piezoelectric material, in: 22nd International Congress of Mechanical Engineering − COBEM, Vol. 2013, Ribeirao Preto, 2013, pp. 4629–4638 [Google Scholar]
  21. C.M.A. Vasques, J. Dias Rodrigues, Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies, Comput. Struct. 84 (2006) 1402–1414 [Google Scholar]
  22. K.R. Kumar, S. Narayanan, Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs, Smart Mater. Struct. 17 (2008) 055008 [Google Scholar]
  23. W.P. Li, H. Huang, Integrated optimization of actuator placement and vibration control for piezoelectric adaptive trusses, J. Sound Vib. 332 (2013) 17–32 [Google Scholar]
  24. J.W. Sohn, S.-B. Choi, H.S. Kim, Vibration control of smart hull structure with optimally placed piezoelectric composite actuators, Int. J. Mech. Sci. 53 (2011) 647–659 [CrossRef] [Google Scholar]
  25. Z.-G. Song, F.-M. Li, Optimal locations of piezoelectric actuators and sensors for supersonic flutter control of composite laminated panels, J. Vib. Control 20 (2014) 2118–2132 [Google Scholar]
  26. S. Kapuria, M.Y. Yasin, Active vibration control of piezoelectric laminated beams with electroded actuators and sensors using an efficient finite element involving an electric node, Smart Mater. Struct. 19 (2010) 045019 [Google Scholar]
  27. S.B. Choi, J.W. Sohn, Chattering alleviation in vibration control of smart beam structures using piezofilm actuators: experimental verification, J. Sound Vib. 294 (2006) 640–649 [Google Scholar]
  28. Z.-C. Qiu, J.-D. Han, X.-M. Zhang, Y.-C. Wang, Z.-W. Wu, Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator, J. Sound Vib. 326 (2009) 438–455 [Google Scholar]
  29. A.G. Wills, D. Bates, A.J. Fleming, B. Ninness, S.O.R. Moheimani, Model predictive control applied to constraint handling in active noise and vibration control, IEEE Trans. Control Syst. Technol. 16 (2008) 3–12 [Google Scholar]
  30. R. Dubay, M. Hassan, C. Li, M. Charest, Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator, ISA Trans. 53 (2014) 1609–1619 [Google Scholar]
  31. M. Marinaki, Y. Marinakis, G.E. Stavroulakis, Fuzzy control optimized by a Multi-Objective Differential Evolution algorithm for vibration suppression of smart structures, Comput. Struct. 147 (2015) 126–137 [Google Scholar]
  32. J.-J. Wei, Z.-C. Qiu, Y.-C. Wang, Experimental comparison research on active vibration control for flexible piezoelectric manipulator using fuzzy controller, J. Intell. Robot. Syst. 59 (2010) 31–56 [CrossRef] [Google Scholar]
  33. O. Abdeljaber, O. Avci, D.J. Inman, Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks, J. Sound Vib. 363 (2016) 33–53 [Google Scholar]
  34. R. Kumar, S.P. Singh, H.N. Chandrawat, MIMO adaptive vibration control of smart structures with quickly varying parameters: neural networks vs classical control approach, J. Sound Vib. 307 (2007) 639–661 [Google Scholar]
  35. Z. Qiu, X. Zhang, C. Ye, Vibration suppression of a flexible piezoelectric beam using BP neural network controller, Acta Mech. Solida Sin. 25 (2012) 417–428 [CrossRef] [Google Scholar]
  36. S. Li, J. Qiu, H. Ji, K. Zhu, J. Li, Piezoelectric vibration control for all-clamped panel using DOB-based optimal control, Mechatronics 21 (2011) 1213–1221 [CrossRef] [Google Scholar]
  37. J. Han, From PID to active disturbance rejection control, IEEE Trans. Ind. Electron. 56 (2009) 900–906 [Google Scholar]
  38. S. Li, J. Li, Y. Mo, Piezoelectric multimode vibration control for stiffened plate using ADRC-based acceleration compensation, IEEE Trans. Ind. Electron. 61 (2014) 6892–6902 [Google Scholar]
  39. S. Li, J. Li, Y. Mo, R. Zhao, Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator, Smart Mater. Struct. 23 (2014) 015006 [Google Scholar]
  40. Z. Gao, Scaling and bandwidth-parameterization based controller tuning, in: Proceedings of the American Control Conference, 2003, Vol. 6, IEEE, NJ, 2003, pp. 4989–4996. [Google Scholar]
  41. P.C. Müller, J. Lückel, Optimal multivariable feedback system design with disturbance rejection, Probl. Control Inf. Theory 6 (1977) 211–227 [Google Scholar]
  42. S.Q. Zhang, H.N. Li, R. Schmidt, P.C. Müller, Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures, J. Sound Vib. 333 (2014) 1209–1223 [Google Scholar]
  43. S.-Q. Zhang, R. Schmidt, P.C. Müller, X.-S. Qin, Disturbance rejection control for vibration suppression of smart beams and plates under a high frequency excitation, J. Sound Vib. 353 (2015) 19–37 [Google Scholar]
  44. S.Q. Zhang, R. Schmidt, Large rotation FE transient analysis of piezolaminated thin-walled smart structures, Smart Mater. Struct. 22 (2013) 105025 [Google Scholar]
  45. S.-Q. Zhang, Y.-X. Li, R. Schmidt, Modeling and simulation of macro-fiber composite layered smart structures, Compos. Struct. 126 (2015) 89–100 [Google Scholar]
  46. S.Q. Zhang, R. Schmidt, Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations, Compos. Struct. 112 (2014) 345–357 [Google Scholar]
  47. J. Doyle, K. Glover, P. Khargonekar, B. Francis, State-space solutions to standard H2 and H∞ control problems, in: 1988 American Control Conference, 1988, pp. 1691–1696 [Google Scholar]
  48. D. Xue, Y. Chen, D.P. Atherton, Linear feedback control: analysis and design with MATLAB, SIAM, Philadelphia, 2007 [Google Scholar]
  49. A.E. Bryson, Y.C. Ho, Applied optimal control: optimization, estimation, and control, Taylor & Francis, Bristol, 1975 [Google Scholar]
  50. S. Marburg, Six boundary elements per wavelength: Is that enough? J. Comput. Acoust. 10 (2002) 25–51 [CrossRef] [Google Scholar]
  51. P. Langer, M. Maeder, C. Guist, M. Krause, S. Marburg, More than six elements per wavelength: the practical use of structural finite element models and their accuracy in comparison with experimental results, J. Comput. Acoust. 25 (2017) 1750025 [CrossRef] [Google Scholar]
  52. H.K. Khalil, Analysis of sampled-data high-gain observers in the presence of measurement noise, Eur. J. Control 15 (2009) 166–176 [CrossRef] [Google Scholar]
  53. Y. Liu, D. Söffker, Variable high-gain disturbance observer design with online adaption of observer gains embedded in numerical integration, Math. Comput. Simul. 82 (2012) 847–857 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.