Open Access
Mechanics & Industry
Volume 20, Number 2, 2019
Article Number 203
Number of page(s) 6
Published online 19 April 2019
  1. F. Radjai, M. Jean, J.J. Moreau, S. Roux, Force distributions in dense two dimensional granular systems, Phys. Rev. Lett. 77 (1996) 264–277 [Google Scholar]
  2. D. Bonamy, F. Daviaud, L. Laurent, Experimental study of granular surface flows via a fast camera: a continuous description, Phys. Fluids 14 (2002) 1666–1673 [CrossRef] [Google Scholar]
  3. P.A. Cundall, A computer model for simulating progressive large scale movements in Blocky Rock Systems, Proc. Symp Int. Soc. Rock Mech. 1 (1971) 132–150 [Google Scholar]
  4. J.J. Zhao, J.G. Xiao, M.L. Lee, Y.T. Ma, Discrete element modeling of a mining-induced rock slide. SpringerPlus 5 (2016) 1633 [CrossRef] [PubMed] [Google Scholar]
  5. J.D. Oroná, S.E. Zorrilla, J.M. Peralta, Computational fluid dynamics combined with discrete element method and discrete phase model for studying a food hydrofluidization system, Food Bioprod. Process. 102 (2017) 278–288 [CrossRef] [Google Scholar]
  6. G. Saussine, C. Cholet, F. Dubois, C. Bohatier, P.E. Gautier, J.J. Moreau, Modelling ballast behaviour under dynamic loading. Part 1: a 2D polygonal discrete element method approach, Comput. Methods Appl. Mech. Eng. 195 (2006) 2841–2859 [CrossRef] [Google Scholar]
  7. J. Rajchenbach, Flow in powders: from discrete avalanches to continuous regime, Phys. Rev. Lett. 65 (1990) 2221 [CrossRef] [PubMed] [Google Scholar]
  8. N. Taberlet, P. Richard, E.J. Hinch, S shape of a granular pile in a rotating drum, Phys. Rev. E 73 (2006) 050301 [CrossRef] [Google Scholar]
  9. G. Felix, V. Falk, U. D'Ortona, Granular flows in a rotating drum: the scaling law between velocity and thickness of the flow, Eur. Phys. J. E 22 (2007) 25–31 [CrossRef] [EDP Sciences] [Google Scholar]
  10. M. Renouf, D. Bonamy, F. Dubois, P. Alart, Numerical simulation of 2D steady granular flows in rotating drum: on surface flows rheology, Phys. Fluids 13 (2005) 103303 [CrossRef] [Google Scholar]
  11. N.A. Pohlman, B.L. Severson, J.M. Ottino, R.M. Lueptow, Surface roughness effects in granular matter: influence on angle of repose and the absence of segregation, Phys. Rev. E 73 (2006) 031304 [CrossRef] [Google Scholar]
  12. P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique 29 (1979) 47–65 [CrossRef] [Google Scholar]
  13. M. Jean, The non-smooth contact dynamics method, Comp. Methods Appl. Math. Eng. 177 (1999) 235–257 [Google Scholar]
  14. J. Shunying, H.S. Hayley, Effect of contact force models on granular flow dynamics, J. Eng. Mech. 11 (2006) 1252–1259 [Google Scholar]
  15. J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in: J.J. Moreau, P.D. Panagiotopoulos (Eds.), Nonsmooth Mechanics and Applications, Springer, Vienna, 1988, pp. 1–82 [Google Scholar]
  16. M. Renouf, H.P. Cao, V.H. Nhu, Multiphysical modeling of third-body rheology, Tribol. Int. 44 (2011) 417–425 [CrossRef] [Google Scholar]
  17. M. Renouf, F. Dubois, P. Alart, A parallel version of the Non Smooth Contact Dynamics Algorithm applied to the simulation of granular media, J. Comput. Appl. Math. 168 (2004) 375–382 [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Mabrouk, Liaisons unilatérales et chocs élastiques quelconques: un résultat d'existence, C. R. Acad. Sci. I Math. 326 (1998) 1353–1357 [Google Scholar]
  19. M.M. Yovanovitch, Thermal contact resistance across elastically deformed spheres, J. Spacecr. Rockets 4 (1967) 119–122 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.