Open Access
Issue
Mechanics & Industry
Volume 20, Number 4, 2019
Article Number 404
Number of page(s) 16
DOI https://doi.org/10.1051/meca/2019037
Published online 11 July 2019
  1. M. Nosonovsky, B. Bhushan, Green Tribology, Springer, Berlin, 2012 [CrossRef] [Google Scholar]
  2. Q. Wang, Y.-W. Chung, Encyclopedia of Tribology, Springer, Berlin, 2013 [CrossRef] [Google Scholar]
  3. B.C. Majumdar, R. Pai, D.J. Hargreaves, Analysis of water-lubricated journal bearings with multiple axial grooves, P. I. Mech. Eng. J.-J. Eng. 218 (2004) 135–146 [Google Scholar]
  4. T. Ren, M. Feng, Stability analysis of water-lubricated journal bearings for fuel cell vehicle air compressor, Tribol. Int. 95 (2016) 342–348 [Google Scholar]
  5. R.S. Pai, Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load, P. I. Mech. Eng. J.-J. Eng. 222 (2008) 683–691 [Google Scholar]
  6. R.S. Pai, Non-linear transient analysis of multiple axial groove water-lubricated journal bearings, P. I. Mech. Eng. J.-J. Eng. 222 (2008) 549–557 [Google Scholar]
  7. M. Cha, E. Kuznetsov, S. Glavatskih, A comparative linear and nonlinear dynamic analysis of compliant cylindrical journal bearings, Mech. Mach. Theory 64 (2013) 80–92 [Google Scholar]
  8. J.C. Luneno, J.O. Aidanp, Use of nonlinear journal-bearing impedance descriptions to evaluate linear analysis of the steady-state imbalance response for a rigid symmetric rotor supported by two identical finite-length hydrodynamic journal bearings at high eccentricities, Nonlinear Dynam. 62 (2010) 151–165 [CrossRef] [Google Scholar]
  9. M.Z. Mehrjardi, A.D. Rahmatabadi, R.R. Meybodi, A comparative study of the preload effects on the stability performance of noncircular journal bearings using linear and nonlinear dynamic approaches, P. I. Mech. Eng. J.-J. Eng. 230 (2016) 797–816 [Google Scholar]
  10. S. Dousti, R.L. Fittro, An extended Reynolds equation including the lubricant inertia effects application to finite length water lubricated bearings, ASME Turbo Expo: Turbine Technical Conference and Exposition, Montreal, Canada, 2015 [Google Scholar]
  11. S. Dousti, P. Allaire, T. Dimond, J. Gao, An extended Reynold equation applicable to high reduced Reynolds number operation of journal bearings, Tribol. Int. 102 (2015) 182–197 [Google Scholar]
  12. S. Dousti, P. Allaire, B. Nichols, J. Cao, Dynamic properties of multi-lobe water lubricated bearings with temporal and convective inertia considerations, ASME Turbo Expo: Turbine Technical Conference and Exposition, Charlotte, NC, USA, 2017 [Google Scholar]
  13. D.L. Cabrera, N.H. Woolley, D.R. Allanson, Y.D. Tridimas, Film pressure distribution in water-lubricated rubber journal bearings, P. I. Mech. Eng. J.-J. Eng. 219 (2005) 125–132 [Google Scholar]
  14. G. Gao, Z. Yin, D. Jiang, X. Zhang, CFD analysis of load-carrying capacity of hydrodynamic lubrication on a water-lubricated journal bearing, Ind. Lubr. Tribol. 67 (2015) 30–37 [CrossRef] [Google Scholar]
  15. G. Gao, Z. Yin, D. Jiang, X. Zhang, Numerical analysis of plain journal bearing under hydrodynamic lubrication by water, Tribol. Int. 75 (2014) 31–38 [Google Scholar]
  16. X. Zhang, Z. Yin, G. Gao, Z. Li, Determination of stiffness coefficients of hydrodynamic water-lubricated plain journal bearings, Tribol. Int. 85 (2015) 37–47 [Google Scholar]
  17. X. Zhang, Z. Yin, D. Jiang, Y. Wang, X. Wang, Load carrying capacity of misaligned hydrodynamic water-lubricated plain journal bearings with rigid bush materials, Tribol. Int. 99 (2016) 1–13 [Google Scholar]
  18. Y. Wang, Z. Yin, D. Jiang, G. Gao, X. Zhang, Study of the lubrication performance of water-lubricated journal bearings with CFD and FSI method, Ind. Lubr. Tribol. 68 (2016) 341–348 [CrossRef] [Google Scholar]
  19. Y. Wang, Z. Yin, G. Gao, X. Zhang, Analysis of the performance of worn hydrodynamic water-lubricated plain journal bearings considering cavitation and elastic deformation, Mech. Ind. 18 (2017) 508 [Google Scholar]
  20. Z. Guo, T. Hirano, R. kirk, Application of CFD Analysis for Rotating Machinery – Part I: Hydrodynamic, hydrostatic bearings and squeeze film damper, J. Eng. Gas. Turb. Power 127 (2005) 445–451 [CrossRef] [Google Scholar]
  21. K.P. Gertzos, P.G. Nikolakopoulos, C.A. Papadopoulos, CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant, Tribol. Int. 41 (2008) 1190–1204 [Google Scholar]
  22. J.M. Cheqamahi, M. Nili-Ahmadabadi, S. Akbarzadeh, M. Saghafian, Numerical analysis of turbocharger's bearing using dynamic Mesh, J. Appl. Mech. 9 (2016) 2545–2557 [Google Scholar]
  23. H. Liu, H. Xu, P.J. Ellison, Z. Jin, Application of computational fluid dynamics and fluid-structure interaction method to the lubrication study of a rotor-bearing system, Tribol. Lett. 38 (2010) 325–336 [Google Scholar]
  24. Q. Lin, Z. Wei, N. Wang, W. Chen, Analysis on the lubrication performances of journal bearing system using computational fluid dynamics and fluid-structure interaction considering thermal influence and cavitation, Tribol. Int. 64 (2013) 8–15 [Google Scholar]
  25. Q. Li, G. Yu, S. Liu, S. Zheng, Application of computational fluid dynamics and fluid structure interaction techniques for calculating the 3d transient flow of journal bearings coupled with rotor systems, Chin. J. Mech. Eng.-En. 25 (2012) 926–932 [CrossRef] [Google Scholar]
  26. M. Li, C. Gu, X. Pan, S. Zheng, Q. Li, A new dynamic mesh algorithm for studying the 3D transient flow field of tilting pad journal bearings, P. I. Mech. Eng. J.-J. Eng. 230 (2016) 1470–1482 [Google Scholar]
  27. J. Mo, C. Gu, X. Pan, S. Zheng, G. Ying, A thermohydrodynamic analysis of the self-lubricating bearings applied in gear pumps using computational fluid dynamics method, Ind. Lubr. Tribol. 70 (2018) 115–125 [CrossRef] [Google Scholar]
  28. J. Mo, C. Gu, X. Pan, S. Zheng, G. Ying, Experimental and numerical analysis of a self-circulating oil bearing system for gear pumps, Ind. Lubr. Tribol. 70 (2017) 115–125 [Google Scholar]
  29. A. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluid. Eng.-T. ASME 124 (2002) 617–624 [CrossRef] [Google Scholar]
  30. C. Xing, M.J. Braun, H. Li, A three-dimensional Navier-Stokes-based numerical model for squeeze-film dampers. Part 1 – Effects of gaseous cavitation on pressure distribution and damping coefficients without consideration of inertia, Tribol. T. 52 (2009) 680–694 [CrossRef] [Google Scholar]
  31. M.J. Braun, W.M. Hannon, Cavitation formation and modelling for fluid film bearings: A review, P. I. Mech. Eng. J.-J. Eng. 224 (2010) 839–863 [Google Scholar]
  32. G. Zhou, J. Wang, Y. Han, J. Li, W. Pu, B. Wei, Study on the stiffness and damping coefficients of water-lubricated rubber bearings with multiple grooves, P. I. Mech. Eng. J.-J. Eng. 230 (2015) 323–335 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.