Open Access
Mechanics & Industry
Volume 20, Number 4, 2019
Article Number 402
Number of page(s) 11
Published online 05 July 2019
  1. J. Sun, C. Gui, Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation, Tribol. Int. 37 (2004) 841–848 [Google Scholar]
  2. J. Sun, C. Gui, Z. Li, An experimental study of journal bearing lubrication effected by journal misalignment as a result of shaft deformation under load, J. Tribol. Trans. ASME 127 (2005) 813–819 [CrossRef] [Google Scholar]
  3. J. Sun, M. Deng, Y. Fu, Thermohydrodynamic lubrication analysis of misaligned plain journal bearing with rough surface, J. Tribol. Trans. ASME 132 (2010) 0742–4787 [Google Scholar]
  4. J. Sun, X. Zhu, L. Zhang, Effect of surface roughness, viscosity-pressure relationship and elastic deformation on lubrication performance of misaligned journal bearings, Ind. Lubr. Tribol. 66 (2014) 337–345 [CrossRef] [Google Scholar]
  5. Z. Liu, J. Zhou, L. Yu, Computation on pressure distribution of stern bearing liquid film reckoning in inclination of stern shaft, J. Wuhan Univ. Technol. 31 (2009) 111–113 [Google Scholar]
  6. R. Mallya, S. Shenoy, R. Pai, Steady state characteristics of misaligned multiple axial groove water-lubricated journal bearing, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229 (2014) 712–722 [CrossRef] [Google Scholar]
  7. X. Zhang, Z. Yin, D. Jiang, Load carrying capacity of misaligned hydrodynamic water-lubricated plain journal bearings with rigid bush materials, Tribol. Int. 99 (2016) 1–13 [Google Scholar]
  8. X. Zhang, G. Gao, Z. Yin, Numerical analysis and experimental research on load carrying capacity of water-lubricated tilting-pad thrust bearings, Mech. Ind. 19 (2018) 201–209 [CrossRef] [Google Scholar]
  9. Z. He, J. Zhang, W. Xie, Misalignment analysis of journal bearing influenced by asymmetric deflection, based on a simple stepped shaft model, J. Zhejiang Univ. 13 (2012) 647–664 [CrossRef] [Google Scholar]
  10. P. Isaksson, D. Nilsson, R. Larsson, The influence of surface roughness on friction in a flexible hybrid bearing, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 225 (2011) 975–985 [CrossRef] [Google Scholar]
  11. F. Lv, Z. Rao, T. Na, Mixed-lubrication analysis of thin polymer film overplayed metallic marine stern bearing considering wall slip and journal misalignment, Tribol. Int. 109 (2017) 390–397 [Google Scholar]
  12. F. Lv, Z. Rao, T. Na, Mixed-lubrication analysis of misaligned bearing considering turbulence, Tribol. Int. 119 (2018) 19–26 [Google Scholar]
  13. S. Das, S. Guha, Numerical analysis of steady-state performance of misaligned journal bearings with turbulent effect, J. Braz. Soc. Mech. Sci. 41 (2019) 81 [Google Scholar]
  14. T. Rao, A. Rani, T. Nagarajan, Analysis of journal bearing with double-layer porous lubricant film: Influence of surface porous layer configuration, Tribol. Trans. 56 (2013) 841–847 [CrossRef] [Google Scholar]
  15. J. Li, G. Zhang, Y. Huang, Influence of non-gaussian-distributed surface roughness on the static performance of slider bearings, Tribol. Trans. 60 (2016) 739–752 [CrossRef] [Google Scholar]
  16. X. Wang, L. Zhou, M. Huang, Numerical investigation of journal misalignment on the static and dynamic characteristics of aerostatic journal bearings, Measurement 128 (2018) 314–324 [CrossRef] [Google Scholar]
  17. B. Manser, I. Belaidi, A. Hamrani, Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: A numerical survey, C.R. Mec. 347 (2019) 141–165 [CrossRef] [Google Scholar]
  18. C. Gui, J. Sun, Z. He, A dynamic solution method for dynamically loaded bearing, Tribol. Trans. 54 (2010) 384–393 [CrossRef] [Google Scholar]
  19. J. Sun, X. Zhu, L. Zhang, Experimental research on a three-dimensional journal orbit of a crankshaft bearing for an internal combustion engine, J. Tribol. Trans. ASME. 136 (2014) 031708 [CrossRef] [Google Scholar]
  20. Y. Han, C. Chan, Z. Wang, Effects of shaft axial motion and misalignment on the lubrication performance of journal bearings via a fast mixed EHL computing technology, Tribol. Trans. 58 (2015) 247–259 [CrossRef] [Google Scholar]
  21. Y. Han, S. Xiong, J. Wang, A new singularity treatment approach for journal-bearing mixed lubrication modeled by the finite difference method with a herringbone mesh, J. Tribol. Trans. ASME 138 (2016) 011704 [CrossRef] [Google Scholar]
  22. N. Patir, H. Cheng, An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication, J. Lubr. Technol. Trans. ASME 100 (1978) 12–17 [Google Scholar]
  23. N. Patir, H. Cheng, Application of average flow model to lubrication between rough sliding surfaces, J. Lubr. Technol. Trans. ASME. 101 (1979) 220–230 [Google Scholar]
  24. H. Nakai, N. Ino, H. Hashimoto, Effects of film temperature on piston-ring lubrication for refrigeration compressors considering surface roughness, J. Lubr. Technol. Trans. ASME. 120 (1998) 252–258 [Google Scholar]
  25. Y. Guo, X. Lu, W. Li, A mixed-lubrication model considering elastoplastic contact for a piston ring and application to a ring pack, Proc. Inst. Mech. Eng. Part D: J. Auto. Eng. 229 (2015) 174–188 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.