Open Access
Issue
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 608
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2019040
Published online 20 September 2019
  1. P. Mognol, P. Muller, J.-Y. Hascoet, A novel approach to produce functionally graded materials for additive manufacturing, in Proceedings of the Conference on Advanced Research in Virtual and Rapid Prototyping, September 2011, pp. 473–478 [Google Scholar]
  2. P. Muller, P. Mognol, J.-Y. Hascoët, Modeling and control of a direct laser powder deposition process for functionally graded materials (fgm) parts manufacturing, J. Mater. Process Technol., 213, 685–692 (2013) [Google Scholar]
  3. N. Boyard, M. Rivette, O. Christmann, S. Richir, Méthodologie de prise en compte de la fabrication additive lors de la phase de conception, in Colloque national AIP Primeca (13; 2012), Mont-dore, France, March 2012, pp. 1–13 [Google Scholar]
  4. P. Kulkarni, A. Marsan, D. Dutta, A review of process planning techniques in layered manufacturing, Rapid Prototyp. J. 6, 18–35 (2000) [Google Scholar]
  5. O. Ivanova, C. Williams, T. Campbell, Additive manufacturing (am) and nanotechnology: promises and challenges, Rapid Prototyp. J. 19, 353–364 (2013) [Google Scholar]
  6. M. Dawoud, I. Taha, S.J. Ebeid, Mechanical behaviour of abs: An experimental study using fdm and injection moulding techniques, J. Manuf. Process 21, 39–45 (2016) [Google Scholar]
  7. A.W. Gebisa, H.G. Lemu, Investigating effects of fused-deposition modeling (fdm) processing parameters on flexural properties of ultem 9085 using designed experiment, Materials (Basel) 11 (2018) 500 [Google Scholar]
  8. A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Experimental investigation and empirical modelling of fdm process for compressive strength improvement, J. Adv. Res. 3, 81–90 (2012) [Google Scholar]
  9. G.C. Onwubolu, F. Rayegani, Characterization and optimization of mechanical properties of abs parts manufactured by the fused deposition modelling process, Int. J. Manuf. Eng. 2014, 13 (2014) [Google Scholar]
  10. J.M. Chacón, M.Á. Caminero, E. García-Plaza, P.J. Núñez, Additive manufacturing of pla structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Mater. Des. 124, 143–157 (2017) [Google Scholar]
  11. S.-H. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling abs, Rapid Prototyp. J. 8, 248–257 (2002) [Google Scholar]
  12. K.P. Motaparti, G. Taylor, M.C. Leu, K. Chandrashekhara, J. Castle, M. Matlack, Effects of build parameters on compression properties for ultem 9085 parts by fused deposition modeling, in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin, Texas, USA, 2016, pp. 8–10 [Google Scholar]
  13. M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, Effect of infill parameters on tensile mechanical behavior in desktop 3D printing, 3D Print Addit. Manuf. 3, 183–192 (2016) [Google Scholar]
  14. T.J. Howard, S.J. Culley, E. Dekoninck, Describing the creative design process by the integration of engineering design and cognitive psychology literature, Des. Stud. 29, 160–180 (2008) [Google Scholar]
  15. G. Pahl, W. Beitz, J.A. Feldhusen, K.-H Grote, Engineering Design: A Systematic Approach, Springer-Verlag, London, UK, 2007 [Google Scholar]
  16. C. Hales, S. Gooch, Managing Engineering Design, Springer, London, UK, 2004 [CrossRef] [Google Scholar]
  17. V.D. Ingenieure, Konstruktionsmethodik Methodisches Entwickeln von Lösungsprinzipien Blatt 1, Beuth Düsseldorf, Berlin, Deutschland, 1997 [Google Scholar]
  18. H. Rodrigue, Méthodologie de conception et d’optimisation de mécanismes fabriqués par fabrication rapide, PhD thesis, Ecole Polytechnique de Montréal, Canada, 2010 [Google Scholar]
  19. J.-Y. Hascoët, R. Ponche, O. Kerbrat, P. Mognol, From functional specifications to optimized cad model: Proposition of a new dfam methodology, in T.M.D. Ferreira (ed.), International Conference on Advanced Research in Virtual and Rapid Prototyping, 2011 [Google Scholar]
  20. O. Kerbrat, P. Mognol, J.-Y. Hascoët, A new dfm approach to combine machining and additive manufacturing, Comput. Ind. 62, 684–692 (2011) [Google Scholar]
  21. R. Ponche, Méthodologie de conception pour la fabrication additive, application à la projection de poudre, PhD thesis, Ecole Centrale de Nantes, France, 2013 [Google Scholar]
  22. U.K. uz Zaman, E. Boesch, A. Siadat, M. Rivette, A.A. Baqai, Impact of fused deposition modeling (fdm) process parameters on strength of built parts using taguchi’s design of experiments, Int. J. Adv. Manuf. Technol. 101, 1215–1226 (2019) [Google Scholar]
  23. K. Singh, Experimental study to prevent the warping of 3d models in fused deposition modeling, Int. J. Plast. Technol. 22, 177–184 (2018) [CrossRef] [Google Scholar]
  24. W. Yu, Electre tri(aspects méthodologiques et manuel d’utilisation), Document- Université de Paris-Dauphine, LAMSADE, 1992 [Google Scholar]
  25. J.-H. Kao, F.B. Prinz, Optimal motion planning for deposition in layered manufacturing, in Proceedings of Design Engineering Technical Conference, 1998, pp. 13–16 [Google Scholar]
  26. C. Fonda, A practical guide to your first 3D print, Low-cost 3D printing for science, education and sustainable development, 1st edn. ICTP/he Abdus Salam International Centre for Theoretical Physica, Trieste, Italy, 2013, pp. 25–60 [Google Scholar]
  27. C.B. Williams, J.K. Cochran, D.W. Rosen, Additive manu- facturing of metallic cellular materials via three-dimensi- onal printing, Int. J. Adv. Manuf. Technol. 53, 231–239 (2011) [Google Scholar]
  28. G. Strano, L. Hao, R.M. Everson, K.E. Evans, A new approach to the design and optimisation of support structures in additive manufacturing, Int. J. Adv. Manuf. Technol. 66, 1247–1254 (2013) [Google Scholar]
  29. N. Boyard, Méthodologie de conception pour la réalisation de pièces en fabrication additive, PhD thesis, Ecole Nationale Supérieure d’Arts et Métiers, Paris, France, 2013 [Google Scholar]
  30. A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater. Des. 31, 287–295 (2010) [Google Scholar]
  31. O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Adv. Manuf. 3, 42–53 (2015) [Google Scholar]
  32. A. Guerrero de Mier, M.M. Espinosa, M. Domínguez, Bricking: A new slicing method to reduce warping, Proc. Manuf. 132, 126–131 (2015) [Google Scholar]
  33. B.N. Panda, K. Shankhwar, A. Garg, Z. Jian, Performance evaluation of warping characteristic of fused deposition modelling process, Int. J. Adv. Manuf. Technol. 88, 1799–1811 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.